Веерно-роторный теплообменник

Изобретение относится к энергетике, в частности к теплообменникам с подвижным промежуточным теплоносителем, и может быть использовано в системах вентиляции жилых, производственных помещений. Задачей, на решение которой направлено изобретение, является создание теплообменника с повышенным КПД теплообмена. Указанный эффект достигается за счет того, что веерно-роторный теплообменник состоит из ротора - пакета пластин, равномерно распределенных по окружности и закрепленных на валу ротора, вращающегося встречено как к охлаждаемому, так и к нагреваемому потоку. Потоки преодолевают пластины через теплообменные вставки в них. При вращении вала происходит сложение пластин за счет ограничителей, установленных на границах раздела потоков, проходящих через теплообменник. Скорость вращения вала линейно связана со скоростью потоков и коэффициент пропорциональности между ними регулируется блоком управления методом измерения разности начальных и конечных температур потоков, реализуя функцию нахождения максимума разности этих температур. 5 з.п.ф-лы, 3 ил.

 

Изобретение относится к энергетике, в частности к теплообменникам с подвижным промежуточным теплоносителем, и может быть использовано в системах вентиляции жилых, производственных помещений.

Известны теплообменники (GB 1426971, SU 603830), состоящие из корпуса, разделенного на две зоны, в одной из которых перемещается охлаждаемый поток, а во второй нагреваемый поток, вала с закрепленным на нем набором дисков, которые являются теплоносителем, вращающихся в двух зонах одновременно и осуществляющих теплообмен между потоками. Однако эффективный теплообмен возможен лишь между близкими к поверхностям дисков слоями потока, и поэтому КПД теплообмена ограничен.

Известны роторные теплообменники (US 1522825, US 2337907) с дисковым теплоносителем, имеющие очень большую эффективную площадь теплообмена. В этих теплообменниках теплоноситель имеет структуру множества каналов в направлении потока, т.е. поток продувается через микропоры. Однако значение КПД теплообмена для них также имеет принципиальное ограничение, т.к. изменение температуры по сечению потока на выходе из теплоносителя различно и приближается к максимально возможному лишь для небольшой части потока.

Наиболее близким по уровню техники к заявляемой конструкции является теплообменник (SU 1333970), состоящий из корпуса с примыкающими к нему входными и выходными коллекторами для прохождения через теплообменник нагреваемого и охлаждаемого потоков, двигателя привода ротора, вращающегося встречно к обоим потокам, и нагнетательных вентиляторов для создания потоков с подвижным промежуточным теплоносителем, где для разделения потоков используются группы обратных клапанов. Недостатком является сложность конструкции из-за использования группы обратных клапанов.

Задачей изобретения является упрощение конструкции и поддержание максимального для данной конструкции КПД теплообмена при изменении скорости потоков или их состава.

Поставленная задача решается тем, что веерно-роторный теплообменник, состоящий из корпуса с примыкающими к нему входными и выходными коллекторами для прохождения через теплообменник нагреваемого и охлаждаемого потоков, двигателя привода ротора, вращающегося встречно к обоим потокам, и нагнетательных вентиляторов для создания потоков с подвижным промежуточным теплоносителем, снабжен ограничителями движения пластин, установленными на границе раздела зон прохождения потоков, а также блоком управления частотой вращения ротора и датчиками входных и выходных температур, а теплоноситель выполнен в виде вставок в пластины.

Кроме того, вставки теплоносителя выполнены из материала с ячеистой структурой сетки, обеспечивающей эффективный теплообмен, пластины выполнены из гибкого упругого материала, вставки теплоносителя расположены на пластинах таким образом, что при сложении любых К штук, где К>1, соседних пластин образуемая поверхность не имеет отверстий для свободного прохождения потока, как через вставку теплоносителя, а разделение областей охлаждаемого и нагреваемого потоков происходит за счет сложения пластин на ограничителях их движения при вращении ротора, при этом величина торможения, создаваемая ограничителями движения пластин, выбирается таким образом, чтобы на границе разделения потоков происходило сложение не менее чем К+1 пластин, для обеспечения максимального разделения потоков. Скорость вращения линейно связана со скоростью потоков, и коэффициент пропорциональности между ними регулируется блоком управления путем измерения начальной и конечной температуры любого из проходящих через теплообменник потоков и реализуя функцию нахождения максимума разности этих температур для достижения максимальной теплопередачи между потоками.

Как показано на фиг.1, теплообменник состоит из ротора - пакета пластин 4, расположенных радиально, равномерно распределенных по окружности и закрепленных на валу 3, двигателя 2, установленного на корпусе 1 теплообменника. К корпусу теплообменника примыкают входные коллекторы 5, 7 и выходные коллекторы 6, 8, с установленными в них вентиляторами 9, 10, создающими потоки, проходящие через теплообменник. На границе раздела потоков установлены ограничители движения пластин 11.

Пластины имеют вставки теплоносителя с ячеистой структурой 12 (сетки - с учетом малой толщины пластин), расположенные на пластинах таким образом, что при их сложении вместе К штук соседних пластин, будучи закрепленными на валу, образуют сплошную поверхность без отверстий, что необходимо для разделения теплообменника на зоны охлаждаемого и нагреваемого потоков.

Для управления скоростью потоков и скоростью вращения ротора используется блок управления 15 и датчики температуры потоков 13, 14.

Общее количество пластин много больше К. Пластины изготавливаются из гибкого, упругого материла, так как они подвержены непрерывному изгибу. Очевидно, что для уменьшения изгиба пластин необходимо выбирать число пластин достаточно большим, больше 100.

Ротор вращается с угловой скоростью W встречено к обоим потокам, которые движутся соответственно встречено друг к другу через входные коллекторы 5, 7 и выходные коллекторы 6, 8 соответственно со скоростями V1 и V2 (не обязательно равными друг другу). Потоки, создаваемые приточным 9 и вытяжным 10 вентиляторами, преодолевают пластины через вставки теплоносителя. На границах раздела потоков при вращении вала происходит сложение пластин за счет ограничителей 11, т.к. для преодоления ограничителя пластина должна отклониться, и прогнуться от своего начального положения. Величина торможения внешних краев пластин на ограничителе выбирается такой, чтобы происходило одновременное сложение не менее чем К+1 пластин для надежного разделения зон прохождения потоков.

Таким образом, пластины перемещаются в нагреваемом потоке, постепенно остывая и соответственно наоборот, создавая почти равномерное изменение температуры потока по углу в направлении вращения, как показано на фиг.2.

Условие оптимальной скорости W вращения вала, при которой достигается максимальный КПД теплопередачи, может быть записано как равенство мощности, необходимой для изменения температуры потока от его начальной температуры до начальной температуры другого потока и мощности, передаваемой от теплоносителя к потоку (идеальный теплообменник), что эквивалентно - скорость W должна быть линейно связана со скоростью V и коэффициент пропорциональности между ними регулируется блоком управления методом измерения разности начальной и конечной температуры любого из потоков и реализуя функцию нахождения максимума разности этих температур. Пример реализации алгоритма работы блока управления показан на фиг.3, где V - скорость потока, по которому ведется регулирование, W - скорость вращения ротора, ΔТ разность температур датчиков температуры потока на входе и выходе из теплообменника, V0, М, ΔТ0 - переменные алгоритма, М0, dW - постоянные значения, задаваемые (или сохраняемые) в блоке управления.

1. Веерно-роторный теплообменник, состоящий из корпуса с примыкающими к нему входными и выходными коллекторами для прохождения через теплообменник нагреваемого и охлаждаемого потоков, двигателя привода ротора, вращающегося встречно к обоим потокам, и нагнетательных вентиляторов для создания потоков с подвижным промежуточным теплоносителем, отличающийся тем, что он снабжен ограничителями движения пластин, установленными на границе раздела зон прохождения потоков, а также блоком управления частотой вращения ротора и датчиками входных и выходных температур, а теплоноситель выполнен в виде вставок в пластины.

2. Веерно-роторный теплообменник по п.1, отличающийся тем, что вставки теплоносителя выполнены из материала с ячеистой структурой сетки, обеспечивающего эффективный теплообмен.

3. Веерно-роторный теплообменник по п.1, отличающийся тем, что пластины выполнены из гибкого упругого материала.

4. Веерно-роторный теплообменник по п.1, отличающийся тем, что вставки теплоносителя расположены на пластинах таким образом, что при сложении любых К штук, где К>1, соседних пластин образуемая поверхность не имеет отверстий для свободного прохождения потока как через вставку теплоносителя.

5. Веерно-роторный теплообменник по п.1, отличающийся тем, что разделение областей охлаждаемого и нагреваемого потоков происходит за счет сложения пластин на ограничителях их движения при вращении ротора, при этом величина торможения, создаваемая ограничителями движения пластин, выбирается таким образом, чтобы на границе разделения потоков происходило сложение не менее чем К+1 пластин для обеспечения максимального разделения потоков.

6. Веерно-роторный теплообменник по п.1, отличающийся тем, что скорость вращения линейно связана со скоростью потоков и коэффициент пропорциональности между ними регулируется блоком управления путем измерения начальной и конечной температуры любого из проходящих через теплообменник потоков, реализуя функцию нахождения максимума разности этих температур для достижения максимальной теплопередачи между потоками.



 

Похожие патенты:

Изобретение относится к регенеративным противоточным теплообменникам и предназначено для использования в вентиляционных системах. .

Изобретение относится к вентиляционной технике и может быть использовано в устройствах для регенерации тепла и холода, например в системах кондиционирования воздуха.

Изобретение относится к области теплоэнергетики и может быть использовано в установках для газодинамического уплотнения регенеративных воздухоподогревателей для снижения перетоков воздуха в дымовые газы.

Изобретение относится к теплообменной технике и может быть использовано для охлаждения газообразных сред (С). .

Изобретение относится к регенеративным теплоутилизаторам, применяемым в системах вентиляции и кондиционирования воздуха

Изобретение относится к области теплообмена, а именно к теплопередающим поверхностям, содержащим множество элементов с поверхностями нагрева в форме волнистых металлических пластин
Изобретение относится к устройству для влаго- и/или теплообмена, например к пластинчатому теплообменнику, сорбционному ротору, адсорбционному влагопоглощающему ротору и тому подобному, с поверхностями для влаго- или теплообмена, с помощью которых влага и/или тепло могут передаваться потоку текучей среды, и/или забираться потоком текучей среды, и/или обмениваться между потоками текучей среды, и покрытием, которым покрыты поверхности для влаго- или теплообмена и которое образовано из цеолитового материала и вяжущего средства

Изобретение относится к области теплотехники и может быть использовано в теплообменниках. Роторный регенеративный теплообменник содержит элементы теплопереноса, содержащие V-образные канавки, которые обеспечивают расстояние между соседними элементами, и гребни (гофры), расположенные между V-образными канавками. Гофры имеют разную высоту и/или ширину. Технический результат - улучшение переноса теплоты посредством увеличения турбулентности воздуха или топочного газа между элементами. 3 н. и 17 з.п. ф-лы, 6 ил.

Изобретение относится к области теплотехники и может быть использовано во вращающихся регенеративных теплообменниках. Теплопередающие листы для вращающегося регенеративного теплообменника содержат множество элементов (59), продолжающихся вдоль листа по существу параллельно направлению потока горячего дымового газа, образующих участок проточного канала между смежными теплопередающими листами и располагающих листы на расстоянии, и множество волнистых поверхностей (71,81), расположенных между каждой парой смежных элементов (59), причем множество волнистых поверхностей содержит первую (71) волнистую поверхность, образованную множеством удлиненных гребней (75), продолжающихся вдоль теплопередающего листа параллельно друг другу под первым углом А1 относительно элементов (59) и вторую волнистую поверхность (81), образованную множеством удлиненных гребней (85), продолжающихся вдоль теплопередающего листа параллельно друг другу под вторым углом А2 относительно элементов (59), причем первый угол А1 отличается от второго угла А2. Технический результат - улучшение теплопередачи путем повышения турбулентности потока. 3 н. и 12 з.п. ф-лы, 9 ил.

Изобретение относится к теплообменному узлу для поворотного регенеративного подогревателя. Теплообменный узел содержит множество теплообменных элементов, расположенных в стопку на расстоянии друг от друга. Каждая выемка из множества выемок одного из теплообменных элементов опирается на соответствующие плоские участки из множества плоских участков смежных теплообменных элементов для создания множества закрытых каналов, изолированных друг от друга. Каждый из каналов выполнен так, что каждый из рифленых участков из множества рифленых участков одного из теплообменных элементов обращен к соответствующему волнистому участку из множества волнистых участков смежных теплообменных элементов. В результате обеспечивается повышение мощности и эффективности теплообмена, улучшение сажеобдувки и повышение защиты от коррозии. 6 н. и 11 з.п. ф-лы, 9 ил.

Изобретение относится к теплотехнике и может быть использовано для уплотнения ротора в регенеративных теплообменниках. Регенеративный теплообменник (1) с ротором (2), установленным с возможностью вращения вокруг оси (А) и передачи тепла, по меньшей мере, от одного объемного потока газа (V), проходящего через ротор (2), к, по меньшей мере, одному другому объемному потоку газа, проходящему через ротор (2), снабженный системой уплотнения ротора (2), при этом система уплотнения ротора (2) содержит расположенные на его торцевых сторонах и прижатые к нему неподвижные радиальные уплотнения (4) и установленные по окружности на фланцах (6) ротора (2) уплотнения (5), опирающиеся на фланцы (6) посредством роликовых опор (12). 9 з.п. ф-лы, 4 ил.
Наверх