Способ бесконтактного измерения объектов, имеющих на изображении расфокусированные границы

Способ бесконтактного измерения объектов, имеющих на изображении расфокусированные границы, включает регистрацию изображения объекта в запоминающем устройстве, задание прямоугольных областей изображения для последующего обнаружения контура объекта, выполнение дифференциально-интегральных преобразований, определение координат контура и вычисление размеров. Дополнительно путем калибровки измерительной системы находят зависимость ширины линий контура от смещения объекта, а при измерении определяют ширину линий контура и, используя полученную зависимость, преобразуют ширину линий в расстояние от границ объекта до плоскости фокусировки, которое учитывают при вычислении размеров объекта. Технический результат - возможность измерения без перефокусировки системы заготовок разной толщины, а также трехмерных объектов с гранями, расположенными на некотором расстоянии от плоскости фокусировки и непараллельными ей. 3 ил.

 

Изобретение относится к оптико-электронным способам определения формы и геометрических размеров объектов с помощью многоэлементных фотоприемных устройств. Цель изобретения - повышение точности измерений в условиях случайного смещения измеряемого объекта относительно плоскости, на которую сфокусирован объектив камеры (плоскости предметов).

Известна оптико-электронная система для контроля размеров отверстий в ситах, описанная в журнале "Автометрия" (Сибирское отделение РАН, Институт Автоматики и Электрометрии, 2003 г. №5, том 39, стр.53-61).

Способ измерения отверстий, реализованный в указанной системе, заключается в поочередной регистрации отверстий с помощью видеокамеры и двухэтапной обработке полученных изображений. На первом этапе автоматически определяются зоны изображения, в которых расположены края измеряемого отверстия. На втором этапе в зонах производятся яркостные преобразования, позволяющие выделить контуры отверстия. После этого методом центра масс определяются двумерные координаты отдельных точек контура. Диаметр отверстия вычисляется как расстояние между двумя диаметрально противоположными точками контура.

Способ позволяет с высокой точностью и быстродействием выполнять измерения круглых отверстий, штампованных в тонком стальном листе сита, но только при условии совпадения поверхности сита с плоскостью фокусировки.

В процессе эксплуатации рабочая поверхность сита вытягивается и прогибается, поэтому контур края конкретного отверстия может не совпадать с плоскостью обечайки сита, т.е. оказывается не в фокусе видеокамеры. Для точного измерения таких отверстий требуется сфокусировать видеокамеру и ввести соответствующие поправки, поскольку при фокусировке изменяется масштаб изображения. Однако на склонах рабочей поверхности сита невозможно сфокусировать все точки края отверстия, что приводит к неоднозначности фокусировки и ошибкам измерений. Кроме того, регистрация отверстий с некоторого ракурса вызывает появление перспективных искажений и, как следствие, приводит к увеличению погрешности измерений.

По совокупности признаков наиболее близким к предлагаемому является способ, описанный в патенте США №6621928 "Image edge detection method, inspection system and recording medium", G 06 F 15/42, опубл. 16.09.2003 г.

Данный способ контроля заключается в обнаружении на изображении контрастных переходов и определении расстояний между ними. Последовательность операций при контроле объектов включает следующие шаги: сохранение изображения контролируемого объекта в запоминающем устройстве; выбор прямоугольной области для поиска краев; интегрирование яркостей пикселей в выбранной области вдоль первого направления (параллельного краю); выполнение дифференцирования интегральной функции вдоль направления, перпендикулярного краю; определение координат краев; вычисление внешнего размера контролируемого объекта, равного расстоянию между двумя противоположными краями объекта.

Система, реализующая описанный выше способ, контролирует заготовки, движущиеся на ленте транспортера в поле зрения видеокамеры. Данный способ обладает ограниченными функциональными возможностями, так как не приспособлен к измерению объектов, по каким-либо причинам отклонившихся от плоскости, на которую сфокусирован объектив видеокамеры, например, стоящих наклонно или имеющих разную толщину.

К недостаткам способа, принятого за прототип, относится то, что при определении размеров заготовки двумерные координаты (х, у) ее краев на изображении пересчитываются в плоскость предметов объектива с фиксированным коэффициентом пропорциональности. В случае смещения заготовки относительно плоскости предметов оптическое увеличение не будет соответствовать расчетному и поэтому коэффициент пропорциональности должен быть изменен.

Предлагаемое изобретение ставит перед собой решение следующих задач:

- повышение точности бесконтактных измерений объектов, непреднамеренно смещенных относительно плоскости предметов камеры;

- расширение функциональных возможностей за счет измерений трехмерных объектов по одному изображению.

Указанные задачи решаются разработкой способа бесконтактного измерения объектов, имеющих на изображении расфокусированные границы, включающего регистрацию изображения объекта в запоминающем устройстве, задание прямоугольных областей изображения для последующего обнаружения границ объекта, выполнение дифференциально-интегральных преобразований, определение координат границ и вычисление размеров, а также процедуры определения ширины линий контура и преобразования ширины линий в расстояние от соответствующих границ объекта до плоскости предметов, при этом расстояние до плоскости предметов учитывают при вычислении размеров объекта.

Технический результат, достигаемый при реализации, заключается в возможности измерения заготовок разной толщины без дополнительной подфокусировки объектива. Кроме того, данный способ дает возможность измерения трехмерных объектов, имеющих грани, расположенные на некотором расстоянии от плоскости предметов и непараллельные ей.

Достижение технического результата возможно благодаря тому, что существует прямая связь между отклонением предмета от поверхности, на которую сфокусирован объектив, и величиной дефокусировки изображения. Известно, что при отклонении объекта от плоскости предметов его контуры на изображении оказываются нерезкими ("смазанными"), причем чем дальше от плоскости предметов находится объект, тем шире его контурная линия. В общем случае на изображении возможна неравномерная ширина контура, что свидетельствует о наклоне границы объекта к плоскости наилучшей фокусировки.

В заявляемом изобретении толщина линий на изображении, соответствующих краям или ребрам объекта, используется в качестве параметра для определения расстояния от соответствующего ребра до плоскости фокусировки. Для того, чтобы преобразовать ширину линии в третью координату, необходимо знать функцию преобразования. Эта функция - функция зависимости величины расфокусировки контурных линий от расстояния между объектом и плоскостью предметов - должна быть определена на этапе калибровки оптико-электронной системы.

Итак, предлагаемый способ бесконтактных измерений объектов содержит следующие шаги (фиг.1):

1 - регистрация изображения контролируемого объекта в запоминающем устройстве;

2 - отображение на экране монитора;

3 - выбор областей (зон) для поиска границ;

4 - математические преобразования изображений в зонах и выделение контура;

5 - определение двумерных координат точек контура в каждой из зон;

6 - определение ширины линий контура;

7 - определение расстояния от объекта до плоскости фокусировки;

8 - вычисление размера контролируемого объекта.

Общие с прототипом признаки: регистрация изображения контролируемого объекта в запоминающем устройстве; отображение на экране монитора; выбор областей (зон) для поиска границ; математические преобразования изображений в зонах и выделение границ; определение координат границ; вычисление размера контролируемого объекта.

Новыми признаками являются дополнительно введенные шаги определения ширины линии контура на изображении и расстояния от объекта до плоскости предметов, а также изменения в процедуре вычисления размера, связанные с учетом высоты расположения границ объекта над плоскостью фокусировки.

На фиг.1 схематически представлена последовательность действий при осуществлении предлагаемого способа.

На фиг.2 показана реализация способа на примере устройства автоматического контроля сит.

На фиг.3 представлены изображения отверстия сита, полученные на различных этапах заявляемого способа.

Пример.

Контролируемое отверстие сита 1 с помощью сканирующего стола 2, управляемого контроллером 3, вводят в поле зрения видеокамеры 4. Отверстие снизу подсвечивают осветителем 5. В момент, когда отверстие полностью находится в поле зрения, видеокамера регистрирует изображение.

Зафиксированное камерой изображение отверстия преобразуется в цифровой код и записывается в запоминающее устройство компьютера 6.

Далее выбирают зоны для поиска контуров отверстия. Для этого сначала определяют площадь S и координаты (x0, y0) центра массы фигуры, образованной пикселями, яркость которых превышает порог. Порог может быть принят равным полусумме яркостей фона и объекта. Все предварительные вычисления (фиг.1, шаги 3-8) выполняют в координатах изображения. Центром отверстия в первом приближении считается центр массы яркой фигуры:

где Qi - яркость пикселя; xi, yi - его координаты; n - количество пикселей, превышающих порог.

Площадь определяют простым подсчетом количества ярких пикселей: S=n. Поскольку форма отверстия близка к кругу, то его средний радиус можно считать равным Исходя из полученных предварительных оценок центра и радиуса отверстия, выбирают зоны для точного определения края. Зоны располагают так, чтобы их центр находился на расстоянии, равном радиусу R от центра отверстия, при этом линия предполагаемого контура будет находиться примерно в середине зоны (фиг.3а). Количество зон определяется количеством измеряемых радиусов. Размеры зон должны превышать допустимый разброс радиуса отверстия.

Используя один из множества возможных алгоритмов, выполняют интегрально-дифференциальные преобразования, которые позволяют выделить край. В качестве дифференциального преобразования, позволяющего выделить края отверстия, рекомендуется (Обидин Ю.В., Патерикин В.И. Контроль сквозных отверстий малого диаметра в алмазной промышленности. Теория, методы и средства измерений, контроля и диагностики. Материалы II международной научно-практической конференции. Новочеркасск. 21 сентября 2001 г. Часть 1, c.34-41) использовать преобразование вида

Здесь QР - пороговое значение.

После такого преобразования изображение контура приобретает вид, представленный на фиг.3б.

Точное определение координат (x, y) одной из точек контура производят, например, через координаты центра тяжести фрагмента контура, находящегося в зоне (фиг.3в, 3г). В этом случае необходимо учитывать криволинейность границы круглого отверстия.

Ширина контура (w), представленного на фиг.3д, в направлении, перпендикулярном границе, может быть определена, например, на уровне половины максимального значения яркости.

На следующем шаге производят преобразование ширины контурных линий в координату z. Минимальная ширина линий соответствует совпадению краев отверстия с плоскостью фокусировки, уширение линий границы свидетельствует об отклонении краев от плоскости фокусировки. При наклоне поверхности с отверстием ширина контура будет неравномерной (фиг.3б).

Преобразование производят по калибровочной таблице с линейной интерполяцией между табличными значениями:

где w - измеренная ширина контура; wi(zi), wi+1(zi+1) - значения ширины контура на изображениях объектов, смещенных относительно плоскости фокусировки на расстояние zi и zi+1.

Упомянутая выше калибровочная таблица должна быть заполнена на этапе настройки системы, в которой реализуется заявляемый способ. Практически калибровку можно выполнить с использованием фотошаблона отверстия, полученного на стеклянной подложке, покрытой хромом. Шаблон помещают параллельно плоскости фокусировки видеокамеры и вручную перемещают с помощью микрометрической подвижки в направлении нормали к плоскости предметов. В каждом положении изображение отверстия регистрируется видеокамерой и запоминается в ЗУ компьютера. Измерение ширины контура на изображении можно выполнить с помощью программного пакета Photoshop или создать специальную программную процедуру, которая измеряет ширину контура. Результаты измерений wi(zi) заносят в таблицу. Таблица может храниться в отдельном файле калибровки.

Таким образом, после выполнения описанных выше шагов каждый обработанный фрагмент края содержит трехмерные декартовы координаты (x, y, z) одной из точек контура объекта. На завершающем этапе необходимо преобразовать координаты xi, yi в плоскости изображений к координатам в плоскости предметов. Для определения размеров объекта, например диаметра, необходимо выбрать два фрагмента на противоположных краях отверстия.

Диаметр отверстия, равный расстоянию между диаметрально противоположными точками его контура, вычисляют в соответствии с выражением где x1, y1, z1 - координаты одного края отверстия, x2, y2, z2 - координаты противоположного края.

Перемещая зону обработки, можно найти все точки, принадлежащие границе объекта, и восстановить его форму, в том числе и в трехмерном пространстве.

Таким образом, при осуществлении изобретения достигается повышение точности измерений в условиях непредвиденных отклонений объекта от фокальной плоскости камеры.

При этом также достигается возможность осуществления измерения без перефокусировки системы заготовок разной толщины, а также трехмерных объектов с гранями, расположенными на некотором расстоянии от плоскости фокусировки и непараллельными ей.

Введение дополнительных шагов при обработке изображений расширяет возможности автоматизации контроля качества промышленных изделий при одновременном снижении требований к точности установки контролируемых изделий.

Способ бесконтактного измерения объектов, имеющих на изображении расфокусированные границы, включающий регистрацию изображения объекта в запоминающем устройстве, задание прямоугольных областей изображения для последующего обнаружения контура объекта, выполнение дифференциально-интегральных преобразований, определение координат контура и вычисление размеров, отличающийся тем, что дополнительно путем калибровки измерительной системы находят зависимость ширину линий контура от смещения объекта, а при измерении определяют ширину линий контура и, используя полученную зависимость, преобразуют ширину линий в расстояние от границ объекта до плоскости фокусировки, которое учитывают при вычислении размеров объекта.



 

Похожие патенты:

Изобретение относится к информационной технологии в медицине. .

Изобретение относится к области обработки изображения и может быть использовано при оценке бриллиантов. .

Изобретение относится к стереологическому анализу размерных распределений объектов, описываемых по форме эллиптическими цилиндрами. .

Изобретение относится к области стереологического анализа пространственной организации объектов, в частности, при изучении объектов по их плоскостным изображениям.

Изобретение относится к области оптико-электронного приборостроения, а конкретно к телевизионной микроскопии. .

Изобретение относится к области стереологического анализа пространственной организации объектов, в частности при изучении объектов по их плоскостным изображениям.

Изобретение относится к области обработки изображений и может найти применение в автоматизированных системах управления уличным движением, для наблюдения и документирования взлетно-посадочных маневров в аэропортах, в робототехнике и при более общем подходе может служить подсистемой для систем более высокого уровня интерпретации, с помощью которых обнаруживаются, сегментируются и могут наблюдаться движущиеся объекты, а также автоматически определяются их параметры.

Изобретение относится к телевизионной микроскопии и может быть использовано в промышленности при автоматизации контроля качества и, особенно, криминалистике для проведения баллистических экспертиз пуль стрелкового оружия, а также создания и хранения банка данных пулетек для последующей идентификации оружия по следам на пулях.

Изобретение относится к измерительной технике, а именно к инкрементным средствам измерения линейных перемещений. .

Изобретение относится к измерительной технике, а именно к инкрементным средствам измерения линейных перемещений. .

Изобретение относится к измерительной технике, в частности к бесконтактным оптическим средствам измерения геометрических размеров различных объектов. .

Изобретение относится к технике контроля линейных смещений объектов и может использоваться для контроля неплоскостности, непараллельности, при центровке валов турбин, направляющих станков и др.

Изобретение относится к бесконтактным способам измерения линейных размеров, износа, а также к устройствам для их осуществления. .

Изобретение относится к области измерительной техники и может быть использовано для определения размеров объекта и его участков. .

Изобретение относится к оптико-электронным системам технического зрения и может быть использовано в датчиках положения подвижного объекта относительно неподвижного, например, для определения положения подрессоренного кузова железнодорожного вагона относительно оси колесной пары.

Изобретение относится к устройствам калибровки и поверочных систем для грузовых отсеков нефтеналивных судов, к вспомогательному судовому оборудованию и может быть использовано в практике разметочных и поверочных работ в судостроении и транспортном машиностроении.

Изобретение относится к измерительной технике и может быть использовано для контроля линейных размеров изделий
Наверх