Способ получения светлого сиккатива

Изобретение относится к способам получения сиккативов, предлагаемых как в качестве самостоятельных товарных продуктов, так и в производстве лакокрасочных материалов в качестве ускорителей-катализаторов. Способ предусматривает взаимодействие оксида цинка или свинца с 2-этилгексановой кислотой при двухступенчатом нагревании до 105°С на первой и до 120°С на второй ступени в присутствии ускорителя реакции, в качестве которого используют ненасыщенный низкомолекулярный соолигомер, содержащий 30-50 мас.% циклопентадиеновых и 5-20 мас.% инденовых звеньев, выкипающий при 200-370°С при нормальном давлении с молекулярной массой 150-300 а.е.м., йодным числом 30-75 г иода/100 г и последующее разбавление в органическом растворителе, в качестве которого используют смесь уайт-спирита с 25-75 мас.% отгона непрореагировавших углеводородов полимеризации жидких продуктов пиролиза, выкипающего при 120-200°С с плотностью 860-1005 кг/м3. При этом синтез сиккатива ведут при мольном соотношении исходных реагентов: оксид цинка или свинца: 2-этилгексановая кислота =1,0:1,7-2,5, а количество вводимого ускорителя реакции составляет 0,5-2,0 мас.% от загрузки исходных реагентов. Способ позволяет улучшить качество получаемого сиккатива при одновременном снижении затрат на его получение. 2 табл.

 

Изобретение относится к способам получения сиккативов, предлагаемых как в качестве самостоятельных товарных продуктов, так и в производстве лакокрасочных материалов в качестве ускорителей-катализаторов.

Изобретение может быть реализовано на нефтехимических, а также на лакокрасочных предприятиях.

Известен способ получения плавленых сиккативов и таллатов, используемых в качестве сиккативов, путем взаимодействия при 200-275°С канифоли или талового масла с окислами или гидроокисями, или ацетатами, или карбонатами металлов, выбранных из группы: цинк, кальций, свинец, марганец, кобальт, железо или алюминий или их смесями в присутствии добавки, в качестве которой используют гексаметилентетрамин, или меланин, или полиэтиленполиамин в количестве 0,2-5% от веса канифоли или талового масла (см. описание изобретения к авторскому свидетельству №755825, МКИ C 09 F 9/00, С 09 С 51/41, опубликовано 23.10.80). Недостатком данного способа является высокая температура синтеза сиккативов (200-275°С), что во многом обусловливает получение сиккативов неудовлетворительного качества по их цвету - от коричневого до черно-коричневого.

Несколько улучшить цвет получаемого сиккатива позволяет способ, предусматривающий сплавление основного карбоната кобальта с органическими кислотами (синтетическими жирными кислотами фракций С56, С79, C10-C16, С1720, С2125, нафтеновыми или таловыми кислотами) в присутствии аминосодержащей добавки - алкилфеноламинной смолы - в количестве 3-120 мас.% от массы исходных кислот. При этом процесс ведут при 140-180°С (см. описание изобретения к авторскому свидетельству №1649802, МКИ C 09 F 9/00, С 09, С 51/41, для служебного пользования).

Однако и данный способ позволяет получать сиккатив с неудовлетворительным цветом - от 640 мг йода/100 см3 и более 2000 мг иода/100 см3. Кроме того, данный способ сопровождается образованием загрязненных вод и выбросов в атмосферу.

Наиболее близким к предлагаемому является известный способ получения сиккатива путем взаимодействия металлического марганца с 2-этилгексановой кислотой при нагревании в две стадии - сначала при 120-140°С до прекращения выделения водорода, а затем при 150-175°С. При этом в качестве катализатора синтеза сиккатива используют уксусную кислоту, а процесс проводят в атмосфере инертного газа (см. описание изобретения к патенту РФ №2057159, С1 6 C 09 F 9/00).

Данный способ позволяет несколько улучшить цвет получаемого сиккатива (до 220-300 мг йода/100 см3) при содержании каталитически активного металла - марганца - 8,34-10,62 мас.%, а также экологичность технологии.

Однако процесс по известному способу сопровождается выделением водорода, что обуславливает его повышенную пожаро-взрывоопасность. Кроме того, даже при относительно невысоком содержании в сиккативе металла (до 10,62 мас.%) цвет его (до 300 мг иода/100 см3) желает быть лучшим. Повышенная температура (до 175°С) и значительная продолжительность синтеза сиккатива (до 9,5 ч) также являются недостатками данного способа.

Предлагаемое изобретение направлено на решение задачи - создание безопасной, экономически выгодной технологии получения эффективного, концентрированного по содержанию каталитически активного компонента сиккатива улучшенного цвета.

Технический результат, достигаемый за счет реализации заявляемого способа:

- исключение выделения при синтезе сиккатива водорода и повышение безопасности технологического процесса;

- снижение затрат на получение сиккатива за счет уменьшения температуры и продолжительности его синтеза;

- улучшение цвета сиккатива даже при высоком содержании в нем каталитически активного компонента, что позволяет снизить как расход собственно сиккатива, так и дорогостоящих пигментов при его использовании в лакокрасочных материалах.

Сущность предлагаемого изобретения заключается в следующем.

В способе получения сиккатива, включающем взаимодействие компонента, содержащего каталитически активный металл - оксида цинка или свинца - с 2-этилгексановой кислотой при двухступенчатом нагревании до 105°С на первой и до 120°С на второй ступени в присутствии ускорителя реакции, в качестве которого используют ненасыщенный низкомолекулярный соолигомер, содержащий 30-50 мас.% циклопентадиеновых и 5-20 мас.% инденовых звеньев, несущих основную инициирующую нагрузку, остальное - звенья алкенилароматических углеводородов, выкипающий при 200-370°С при нормальном давлении с молекулярной массой 150-300 атомных единиц массы (а.е.м.), йодным числом 30-75 г йода/100 г и последующее разбавление в органическом растворителе, в качестве которого используют смесь уайт-спирита с 25-75 мас.% отгона непрореагировавших углеводородов полимеризации жидких продуктов пиролиза, выкипающего при 120-200°С с плотностью 860-1005 кг/м3. При этом синтез сиккатива ведут при мольном соотношении исходных реагентов: оксид цинка или свинца: 2-этилгексановая кислота, равном 1,0:1,7-2,5, и количестве ускорителя реакции, равном 0,5-2,0 мас.% от загрузки исходных реагентов.

Введение в процесс синтеза сиккатива в качестве ускорителя реакции ненасыщенного низкомолекулярного соолигомера определенного состава и качества не только обеспечивает возможность взаимодействия оксида цинка (или свинца) с 2-этилгексановой кислотой при пониженных температурах (до 105°С на первой и до 120°С на второй ступени нагрева), но и сокращение времени синтеза в 1,5-2 раза без выделения водорода с получением светлого (от бесцветного до цвета 15 мг иода/100 см3) сиккатива с высокой концентрацией (13-22 мас.%) каталитически активного металла. Этому способствует и использование композиционного растворителя, состоящего из смеси уайт-спирита с отгоном непрореагировавших углеводородов полимеризации жидких продуктов пиролиза определенного состава и качества.

Введение большего количества ненасыщенного низкомолекулярного соолигомера приводит к ухудшению цвета получаемого сиккатива.

Введение меньшего количества соолигомера не обеспечивает достижение гарантируемых данным способом технических результатов по интенсификации процесса синтеза сиккатива улучшенного качества.

В качестве исходного сырья были использованы:

2-этилгексановая кислотаТУ 38.48424318-02-99
Оксид цинка (белила цинковые)ГОСТ 202-84
Оксид свинца (глет)ГОСТ 5539-73
Ненасыщенный низкомолекулярный соолигомер, содержащий 30-50 мас.% циклопентадиеновых и 5-20 мас.% инденовых звеньев, остальное - звенья алкенилароматических углеводородов, с пределами кипения 200-370°С, молекулярной массой 150-300 а.е.м. и йодным числом 30-75 г иода/100 гВырабатывается в опытном порядке на опытном производстве ОАО "ВНИКТИнефтехимоборудование" (г.Волгоград)
Отгон непрореагировавших углеводородов полимеризации жидких продуктов пиролиза бензина (ТУ 38.102180-86 "Фракция жидких продуктов пиролиза С9 - сырье для нефтеполимерных смол"), выкипающий при 120-200°С с плотностью 860-1005 кг/м3Вырабатывается по ТУ 38.401194-92 "Отгон атмосферный - растворитель ЛКМ" в опытном порядке на опытном производстве ОАО "ВНИКТИнефтехимоборудование" (г.Волгоград)
Уайт-спирит (нефрас С4-155/200)ГОСТ 3134-78 с изм.1-4

Сиккатив получали следующим образом. В стеклянный трехгорлый реактор при комнатной температуре загружали 2-этилгексановую кислоту, ускоритель реакции - ненасыщенный низкомолекулярный соолигомер - и при перемешивании постепенно добавляли оксид цинка (или свинца). Количество загружаемых реагентов: кислоты и оксида цинка (или свинца), а также соолигомера устанавливали с учетом рекомендуемого мольного соотношения реагентов и величины загрузки ускорителя реакции. При перемешивании в течение 2-х часов вели подъем температуры содержимого реактора до 105°С. При этом в небольших количествах отгонялась вода. Затем в течение 2,5 ч вели подъем температуры с 105°С до 120°С с одновременной отгонкой воды и органической части. Вода отделялась от органики, при этом последняя возвращалась в реактор. После этого проводили подсушку полученного сиккатива при неглубоком вакууме (до 300 мм рт.ст. ост.) в течение 15-20 мин и отбирали пробу на анализ на содержание в нем цинка (или свинца). Разбавление сиккатива до требуемой концентрации и вязкости (не более 200 с по ВЗ-4) производили при комнатной температуре и перемешивании путем добавления расчетного количества смеси уайт-спирита и отгона непрореагировавших углеводородов полимеризации жидких продуктов пиролиза.

Рецептуры и технологические режимы получения сиккативов приведены в табл.1. Здесь же приведены режимы получения сиккатива по известному способу-прототипу. Свойства полученных сиккативов приведены в табл.2.

Из приведенных данных видно, что предлагаемый способ выгодно отличается от известного меньшим количеством необходимых для синтеза сиккатива исходных компонентов, более низкими температурами стадий синтеза и значительно (в 1,6-2,6 раза) меньшей продолжительностью синтеза сиккатива, что обеспечивает значительное снижение себестоимости получаемого сиккатива. При этом получаемый по предлагаемому способу сиккатив характеризуется значительно лучшим цветом (от бесцветного до 15 мг йода/100 см3 против 220-250 мг иода/100 см3 по известному способу) при значительно более высоком содержании в нем каталитически активного металла.

Таблица 1

РЕЦЕПТУРЫ и технологические режимы получения сиккативов
ПоказательСиккатив по прототипуНовые сиккативы
Образец 1Образец 2Образец 3Образец 4
Мольное соотношение реагентов:
марганец: 2-этилгексановая
кислота: уксусная кислота1:2,0:1,5----
оксид цинка (или свинца): 2-этилгексановая кислота1:1,7*)1:2,0*)1:2,5*)1:2,0**)
Количество соолигомера от загрузки исходных реагентов, мас.%-0,51,02,01,0
Загружаемые компоненты, г:
2-этилгексановая кислота524410483617178,3
марганец100----
оксид цинка-100100100-
оксид свинца----100
уксусная кислота160,7-
низкокипящий растворитель - сольвент445----
ненасыщенный низкомолекулярный соолигомер-2,65,814,32,8
разбавитель: уайт-спирит563,3----
смесь уайт-спирита и отгона-350380430106
Стадия процесса (1-я ступень)
температура, °С140105105105105
время, ч3,02,01,40,91,5
Стадия процесса: (2-я ступень)
температура, °С160120120120120
время, ч4,02,32,11,82,0
*) оксид цинка

**) оксид свинца

Таблица 2

СВОЙСТВА СИККАТИВА
ПоказательСиккатив по прототипуНовые сиккативы
Образец 1Образец 2Образец 3Образец 4
Массовая доля, %:
Марганца8,34----
Цинка-131416-
Свинца----22
Плотность при 20°С, кг/м39511026103210471098
Условная вязкость при температуре (20,0±0,5)°С, с52*)92**)120**)160**)196**)
Цвет по иодометрической шкале, мг иода/100 см3220-250бесцветный101515
Стабильность при храненииСтабилен в течение года (при температуре окружающей среды)Стабилен в течение года (при температуре окружающей среды)
*) По вискозиметру ВЗ-6

**) По вискозиметру ВЗ-4

Способ получения светлого сиккатива путем взаимодействия компонента, содержащего каталитически активный металл, с 2-этилгексановой кислотой в присутствии ускорителя реакции при мольном соотношении исходных реагентов 1,0:1,7-2,5 соответственно, при двухступенчатом нагревании с последующим разбавлением в органическом растворителе, отличающийся тем, что в качестве компонента, содержащего каталитически активный металл, используют оксид цинка или свинца, в качестве ускорителя реакции - ненасыщенный низкомолекулярный соолигомер, содержащий 30-50 мас.% циклопентадиеновых и 5-20 мас.% инденовых звеньев, выкипающий при 200-370°С, при нормальном давлении с молекулярной массой 150-300 а.е.м., йодным числом 30-75 г иода/100 г, а в качестве растворителя - смесь уайт-спирита с 25-75 мас.% отгона непрореагировавших углеводородов полимеризации жидких продуктов пиролиза, выкипающего при 120-200°С с плотностью 860-1005 кг/м3, причем ускорителя реакции берут в количестве 0,5-2,0 мас.% от загрузки исходных реагентов, нагревание на первой ступени осуществляют до 105°С и на второй - до 120°С с одновременным удалением отогнанной воды и возвращением отогнанной органической части в реакцию синтеза сиккатива.



 

Похожие патенты:
Изобретение относится к технологии получения лакокрасочных материалов, а именно к способу получения осажденного сиккатива, используемого в качестве катализатора отверждения лакокрасочных покрытий.

Изобретение относится к получению солей поливалентных металлов и кислот растительных масел и жиров, которые могут быть использованы в качестве катализаторов и сиккативов в кожевенной, резинообувной, лакокрасочной и других отраслях промышленности.

Изобретение относится к способу получения марганцевого сиккатива для лакокрасочных материалов. .

Изобретение относится к области синтеза адгезионных материалов, в частности технологии производства кобальтовых солей многоатомных карбоновых кислот, находящих широкое применение в шинной, резинотехнической, лакокрасочной и других отраслях промышленности.

Изобретение относится к области получения сиккативов, применяемых для ускорения высыхания пленки лакокрасочных покрытий. .

Изобретение относится к производству сиккативов и может быть использовано в лакокрасочной промышленности. .

Изобретение относится к производству сиккативов и может быть использовано в лакокрасочной промышленности. .

Изобретение относится к производству сиккативов, полученных на основе карбоновых кислот, и может быть использовано в лакокрасочной промышленности. .

Изобретение относится к получению лакокрасочных материалов, в частности к способам получено сиккативов, используемых при приготовлении лаков, олиф, красок. .

Изобретение относится к производству сиккатива и может быть использовано в лакокрасочной промышленности. .

Изобретение относится к композиции для нанесения самоокисляющегося архитектурного покрытия

Изобретение относится к отверждающим агентам для высушивания на воздухе алкидных смол, покрывающих составов, таких как краска, лак, морилка, типографские краски и линолеумные напольные покрытия

Изобретение относится к области производства сиккативов, обеспечивающих высыхание лакокрасочных материалов на основе алкидных, уралкидных и масляных пленкообразующих

Изобретение относится к области производства сиккативов, обеспечивающих высыхание лакокрасочных материалов на основе алкидных, уралкидных и масляных пленкообразующих
Изобретение относится к области производства сиккативов, обеспечивающих высыхание лакокрасочных материалов на основе алкидных, уралкидных и масляных пленкообразующих

Изобретение относится к технологии получения предназначенных для воздушной сушки масляных пленкообразующих из низкосортных, сильно обводненных, некондиционных кислых растительных масел и может быть использовано в лакокрасочной и других отраслях промышленности, применяющих масляные пленкообразующие, для получения различных лакокрасочных материалов. Способ включает предварительное нагревание масел при 40-90°С с одновременной продувкой воздухом и последующее окисление масел воздухом при нагревании. Окисление проводят до получения оксидата, вязкость раствора в уайт-спирите которого составляет 19-25 с. При этом на этапе предварительного нагревания через масло продувают воздух с содержанием озона 1,5-2,5 мг/л при расходе не более 4 л/мин·кг, а нагрев масла осуществляют нагревателем от температуры 40°С до 90°С со скоростью 2,5 град/мин. При этом в масло добавляют сульфонефтяные кислоты из расчета 0,05-0,15% от массы масла и марганец (II) стеариновокислый из расчета 0,8-1,5% от массы масла, а температурный режим окисления поддерживают путем нагрева масла до температуры 175°С со скоростью 3-5 град/мин с последующим периодическим охлаждением до температуры 100°С. Причем количество циклов нагревания и охлаждения масла составляет не менее двух, а расход воздуха поддерживают на уровне не более 4 л/мин·кг. Результатом является сокращение времени окисления растительного масла, с получением пленкообразующего с требуемыми показателями качества, упрощение технологического процесса. 2 ил., 1 табл., 1 пр.

Изобретение относится к химическому производству и, в частности, может быть использовано при получении сиккативов и каталитических систем, а также к нефтехимическому производству и при получении полимерных материалов с регулируемым сроком службы. Способ включает омыление смеси жирных кислот соединениями натрия с последующим взаимодействием с соединениями металлов переменной валентности. В качестве жирнокислотного компонента используют смесь выделенных из соапстока светлых растительных масел с кислотным числом 100÷120 мг КОН/г. Процесс омыления проводят гидрокарбонатом или карбонатом натрия при непрерывном перемешивании в температурном диапазоне 200÷220°С до получения смеси карбоксилатов натрия с кислотным числом 1÷1,3 мг КОН/г. Далее в эту смесь равномерно подают неорганическую соль двух- или трехвалентного железа, например сернокислое железо, оксид железа, хлорид железа и т.д., в мольном соотношении 2:1 или 3:1 в зависимости от валентности соединения железа. Полученную смесь нагревают при температуре 105÷160°С при непрерывным перемешивании до превращения карбоксилатов натрия в карбоксилат железа с кислотным числом до 1,0 мг КОН/г. Агломерат в виде сульфата натрия удаляют из реакционной смеси. Способ получения карбоксилатов железа по изобретению позволяет усовершенствовать и упростить технологию производства карбоксилатов железа, обеспечивает повышение степени конверсии и выхода, интенсификацирует технологический процесс, способствует расширению области использования, в частности используется при получении оксибиоразлагающих добавок. Табл.1, 6 пр.
Изобретение относится к химической и нефтехимической отрасли, а конкретно к способу получения солей металлов жирных кислот, которые применяются в качестве многофункциональных добавок, комплексных стабилизаторов, сиккатива, промоторов, ингредиентов в резинотехнических изделиях, а также при получении прооксидантов - оксобиоразлагаемых добавок для полимерных материалов с регулируемым сроком службы. Описан способ получения карбоксилатов металлов переменной валентности, включающий омыление смеси жирных кислот и жировых отходов едкой щелочью и последующее взаимодействие с растворимыми солями металлов переменной валентности, в котором на первой стадии жирные кислоты и их производные омыляются в реакторе с перемешивающим устройством при воздействии ультразвуковым генератором с удельной мощностью 250÷500 Вт/дм3, при этом процесс омыления проводят едкой щелочью или ее солью в течение 180÷300 секунд в области температур 140-170°С, а показатель pH среды поддерживают на уровне 9,0±0,25, после чего направляют во второй реактор, где полученные карбоксилаты натрия обрабатывают солями металлов переменной валентности при воздействии ультразвуковым генератором с удельной мощностью 250÷500 Вт/дм3 в течение 300÷600 секунд до достижения кислотного числа не более 0,5 мг КОН/г. Технический результат: разработан способ получения карбоксилатов металлов переменной валентности, обладающий сниженной энергоемкостью, повышенной степенью конверсии, производственной и технологической безопасностью. 7 пр.

Изобретение относится к высыхающей на воздухе самоокислющейся полимерной композиции, содержащей высушивающее вещество на основе марганца. Самоокисляющаяся полимерная композиция включает высушивающее вещество, полученное путем смешивания 1,4,7-триалкил-1,4,7-триазациклононана (L) и соли марганца, имеющей общую формулу Mn2+[X]n, в которой в качестве аниона X выбирают PF6-, SbF6-, AsF6-, BF4-, B(C6F5)4-, Cl-, Br-, I-, NO3- или R2COO-, и в этом случае n=2, или анион X представляет собой SO42-, и в этом случае n=1, причем R2 представляет собой C1-C20-алкил. Причем 1,4,7-триалкил-1,4,7-триазациклононан (L) присутствует в смеси в таком количестве, что молярное соотношение L:Mn составляет по меньшей мере 1,25:1 и предпочтительнее по меньшей мере 1,5:1. Описаны также покровная композиция из самоокисляющейся полимерной композиции, способ нанесения покрытия на подложку, подложка и применение композиции в красках, связующих веществах, лаках, чернилах и глазурях и применение смеси L и Mn в качестве высушивающего вещества для высыхающей на воздухе самоокисляющейся полимерной композиции. Технический результат – обеспечение не содержащих кобальта катализаторов, которые могут обеспечить быстрое высыхание и одновременно способствовать уменьшению желтизны покровных композиций. 6 н. и 8 з.п. ф-лы, 12 табл., 15 пр.

Изобретение относится к композиции самоокисляемого смоляного состава, высыхающего в воздушной среде. Композиция включает осушитель для самоокисляемого смоляного состава, высыхающего в воздушной среде, и полимер, включающий ненасыщенные алифатические группы. Упомянутый осушитель получают путем смешивания марганцевой соли с 1, 4, 7-трехзамещенным-1, 4, 7-триазациклононаном (L). Марганцевая соль имеет общую формулу Mn2+[X]n, в которой анион Х выбирают из PF6-, SbF6-, AsF6-, BF4-, B(C6F5)4-, Cl-, Br-, I-, NO3- или R2COO-, в этом случае n=2, или анион Х является SO42-, при этом n=1, и где R2=C1-C20 алкил. При этом 1,4,7-триалкил-1,4,7-триазациклононан (L) присутствует в смеси в таком количестве, что молярное отношение Mn:L составляет по меньшей мере 1,25:1, предпочтительно по меньшей мере 1,5:1 и меньше чем 20:1. Описаны также покрывающий состав, способ покрытия подложки, подложка, покрытая составом, применение состава в красках, клеях, политурах, чернилах и лаках и применение смеси 1,4,7-триалкил-1,4,7-триазациклононана (L) и марганцевой соли в качестве осушителя для самоокисляемого смоляного состава, высыхающего в воздушной среде. Технический результат – обеспечение не кобальтовых катализаторов для составов покрытий, их содержащих, и которые одновременно обеспечивают быстросохнущие покрытия, отличающиеся существенной твердостью и глянцевыми свойствами. 6 н. и 8 з.п. ф-лы, 9 табл., 3 пр.
Наверх