Способ измерения входного комплексного акустического импеданса

Изобретение относится к машиностроительной акустике и может быть использовано при определении акустических характеристик, в частности импеданса различных гидравлических устройств, например насосов и трубопроводных систем. Согласно способу измерения входного комплексного акустического импеданса в трубопроводе, подсоединенном к измеряемому объекту, возбуждают при помощи источника колебаний звуковую волну, измеряют при помощи датчиков звуковые давления в первом и втором разнесенных по длине трубопровода сечениях и разность фаз между указанными звуковыми давлениями. Для получения зависимости импеданса от частоты изменяют частоту анализа (при возбуждении шумового сигнала) либо изменяют частоту источника колебаний (при возбуждении монохроматического сигнала). Изобретение направлено на получение значений действительной и мнимой части комплексного акустического импеданса в зависимости от частоты для прогнозирования резонансных частот столба перекачиваемой среды в комплексе «насос-система» или «вентилятор (компрессор)-система». 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к машиностроительной акустике и может быть использовано при определении акустических характеристик, в частности импеданса, различных гидравлических устройств, например насосов и трубопроводных систем.

Известен способ измерения входного комплексного акустического импеданса методом стоячих волн в т.н. трубе Кундта [Скучик Е. Основы акустики, М., 1958 г., т.1, стр.150], основанный на поиске узла и пучности стоячей волны. При изменении частоты звукового сигнала процедура поиска узла и пучности стоячей волны повторяется. Однако этот способ требует размещения в трубе подвижного приемника звукового давления, что нереализуемо для труб заполненных жидкостью.

Известен способ измерения входного комплексного акустического импеданса лопастного насоса при помощи системы двух поршневых излучателей [А.с. СССР №1560800. МПК 5 F 04 В 51/00 1977 г.]. При изменении фазового соотношения излучения добиваются появления пучности и узла стоячей волны в месте установки датчика звукового давления. После чего по расчетным формулам определяют акустический импеданс. При весьма спорной методологии получения исходных данных для расчета импеданса, известный способ требует наличия громоздкого механического устройства подстройки разности фаз работающих излучателей. При этом процесс измерения занимает весьма длительное время, поскольку измерение на каждой частоте требует тщательной настройки излучателей: сначала на пучность стоячей волны, а затем на ее узел.

Задачей настоящего изобретения является получение значений действительной и мнимой частей акустического импеданса для прогнозирования резонансных частот столба перекачиваемой среды в комплексе "насос-система" или "вентилятор (компрессор)-система". Для достоверного прогнозирования резонансных частот необходимо порознь, например в условиях стенда, провести измерения комплексного акустического импеданса работающего насоса и измерения комплексного акустического импеданса реальной системы.

На чертеже представлена схема устройства для осуществления способа определения входного импеданса лопастного насоса или системы. Гидравлическая магистраль 1 подключена ко входу испытуемого объекта 2 (насоса или трубопроводной системы). Излучатель звуковых колебаний 3 установлен в магистрали 1 и связан с вибростендом 4. Между излучателем звуковых колебаний 3 и испытуемым объектом 2 расположены два датчика звукового давления 5, 6.

Способ осуществляется следующим образом. Устанавливают требуемый режим работы насоса, включают излучатель звуковых колебаний 3 (на монохроматическом или шумовом режиме излучения) и производят замер звуковых давлений датчиками 5, 6 и разности фаз между указанными звуковыми давлениями. После чего изменяют либо частоту излучения (при монохроматическом режиме излучения), либо частоту анализа звуковых колебаний (при шумовом режиме излучения). По результатам измерений определяют действительную и мнимую часть акустического импеданса. При этом расстояние от вспомогательного источника колебаний до датчика в точке 1 должно быть не менее двух калибров, расстояние от исследуемого препятствия до датчика в точке 2 также должно быть не менее двух калибров, частотный диапазон определения акустического импеданса задается следующими условиями:

где:

fmin, fmax (Гц) - нижняя и верхняя границы частотного диапазона;

b(м) - расстояние между датчиками звукового давления:

с(м/с) - скорость звука в среде, заполняющей трубопровод;

D(м) - диаметр (калибр) трубы,

а акустический импеданс определяется из следующих соотношений:

где:

- действительная и мнимая часть акустического импеданса соответственно;

ρ (кг/м3) - плотность среды, заполняющей трубопровод;

с (м/с) - скорость звука в среде, заполняющей трубопровод;

Р1, Р2 (Па) - звуковые давления, измеряемые в точках с координатами х1, х2 соответственно;

Δϕ - разность фаз между звуковыми давлениями;

- волновое число;

f(Гц) - частота.

В предлагаемом способе предусмотрена также возможность при помощи излучателя 3 возбуждения звуковых волн как в виде монохроматических, так и в виде шумовых сигналов.

Применение предложенного способа позволит при помощи простого устройства и за минимальное время проведения испытаний получить значения действительной и мнимой частей акустического импеданса, необходимых для:

- прогнозирования резонансных частот столба перекачиваемой среды в комплексе "насос-система" или "вентилятор (компрессор)-система";

- исследования процессов, протекающих в проточных частях насоса (вентилятора).

1. Способ измерения входного комплексного акустического импеданса, заключающийся в том, что в трубопроводе, подсоединенном к измеряемому объекту, возбуждают при помощи источника колебаний звуковые волны, измеряют при помощи датчиков звуковые давления в первом и втором разнесенных по длине трубопровода сечениях и определяют действительную и мнимую части импеданса, отличающийся тем, что для определения действительной и мнимой частей импеданса при возбуждении звуковых волн и измерения звуковых давлений в указанных сечениях, первое из которых расположено на расстоянии не менее двух калибров от источника колебаний, а второе на таком же расстоянии от измеряемого объекта, дополнительно измеряют разность фаз между звуковыми давлениями в первом и во втором сечениях, изменяют либо частоту анализа, либо частоту излучения и повторяют процедуру измерения, после чего, используя измеренные значения звуковых давлений, разности фаз, скорости звука и расстояния между датчиками применяют следующие выражения:

где

- действительная и мнимая часть акустического импеданса соответственно;

ρ - (кг/м3) плотность среды, заполняющей трубопровод;

с (м/с) - скорость звука в среде, заполняющей трубопровод;

Р1, Р2 (Па) - звуковые давления, измеряемые в точках с координатами х1, х2 соответственно;

Δϕ - разность фаз между звуковыми давлениями;

- волновое число;

f (Гц) - частота,

причем частотный диапазон определения импеданса задают следующими условиями:

где

fmin, fmax (Гц) - нижняя и верхняя границы частотного диапазона;

b (м) - расстояние между датчиками звукового давления:

D (м) - диаметр (калибр) трубы.

2. Способ измерения входного комплексного акустического импеданса по п.1, отличающийся тем, что звуковые волны возбуждают в виде монохроматических сигналов.

3. Способ измерения входного комплексного акустического импеданса по п.1, отличающийся тем, что звуковые волны возбуждают в виде шумового сигнала.



 

Похожие патенты:

Изобретение относится к приборостроению и может быть использовано при оценке акустических свойств материалов. .

Изобретение относится к измерительной технике, к способам диагностирования двигателей по изменению аэроакустических характеристик потока, протекающего через проточную часть авиационных газотурбинных двигателей.

Изобретение относится к акустике и может быть использовано в измерительных акустических приборах. .

Изобретение относится к управлению и регулированию двигателей внутреннего сгорания, испытывающих значительные колебания нагрузки, и позволяет повысить производительность машинно-тракторного агрегата за счет получения плавной без изломов и большей площадью под кривой эффективной мощности скоростной характеристики дизеля, а также повышения точности регулирования параметров дизеля в диапазоне частот вращения вала от максимального холостого хода до максимального крутящего момента, включая номинальный.

Изобретение относится к измерительной технике и может найти применение при определении характеристик звукопоглощающих конструкций в акустической интерферометре по измеряемым уровням звукового давления.

Изобретение относится к исследованию динамических свойств колебательных систем. .

Изобретение относится к измерительной технике. .

Изобретение относится к области ультразвуковой измерительной техники и может быть использовано при акустических исследованиях биологических или технических сред, которые с течением времени заметно меняют свои физико-химические характеристики, влияющие, в свою очередь, на акустические характеристики подобных материалов

Изобретение относится к области неразрушающего контроля материалов и может быть использовано при ультразвуковом исследовании и идентификации твердых материалов, например, в криминалистике

Группа изобретений относится к области измерительной техники, в частности к способу и устройству диагностирования газотурбинных двигателей по изменению аэроакустических характеристик потока. Способ измерения акустических характеристик газовых струй на срезе выходных устройств газотурбинных двигателей включает замер акустических характеристик аэродинамического шума по плоскости струи, оценку изменений выходных акустических параметров во всем диапазоне частот от эталонных, по которым в свою очередь определяют наличие характерных дефектов. При этом замеры акустических параметров проводят одновременно по всей плоскости среза сопла посредством аэроакустической антенны, представляющей собой дифракционную решетку, состоящую из волоконно-оптических датчиков. Решетку датчиков устанавливают неподвижно в плоскости, перпендикулярной газовой струе, и соосно с ней, при этом увеличивают частоту замера по периферии за счет уменьшения шага решетки к её периферии. Устройство диагностики ГТД представляет собой систему замера уровней звукового давления, выполненную в виде аэроакустической антенны. Антенна реализована в виде дифракционной решетки, состоящей из волоконно-оптических датчиков, и установлена неподвижно в плоскости среза сопла, при этом шаг решетки уменьшается к её периферии. Технический результат - повышение точности и достоверности диагностирования. 2 н.п. ф-лы, 1 ил.

Использование: для измерения акустического сопротивления однородных сред. Сущность изобретения заключается в том, что устройство для измерения акустического сопротивления однородных сред содержит первый и второй ультразвуковые преобразователи, предназначенные для контактирования через эталонную среду с исследуемой и контрольной средами соответственно, ультразвуковой генератор, первый и второй выходы которого соответственно подключены к первому и второму ультразвуковым преобразователям, суммирующий каскад, входы которого подключены к первому и второму ультразвуковым преобразователям, делитель и блок функционального преобразования, связанный с выходом делителя, при этом в состав устройства введены дифференциальный усилитель и блок возведения в степень, причем первый вход дифференциального усилителя подключен ко второму ультразвуковому преобразователю, а второй вход этого усилителя подключен к первому ультразвуковому преобразователю, первый вход делителя подключен к выходу дифференциального усилителя, а второй его вход подключен к выходу суммирующего каскада, выход делителя подключен к входу блока возведения в степень, а выход последнего подключен к входу блока функционального преобразования, причем блок функционального преобразования реализует заданную функциональную зависимость. Технический результат: повышение чувствительности к акустическому сопротивлению исследуемой среды. 1 ил.

Использование: для измерения акустического сопротивления материалов. Сущность изобретения заключается в том, что устройство для измерения акустического сопротивления твердых материалов, содержащее первый и второй ультразвуковые преобразователи, предназначенные для контактирования через эталонную среду с исследуемым материалом и контрольной средой соответственно, ультразвуковой генератор, первый и второй выходы которого соответственно подключены к первому и второму ультразвуковым преобразователям, делитель и блок функционального преобразования, при этом второй вход делителя подключен ко второму ультразвуковому преобразователю, а выход делителя связан с блоком функционального преобразования, при этом первый вход делителя подключен к первому ультразвуковому преобразователю, между выходом делителя и входом блока функционального преобразования введена цепочка последовательно соединенных блоков: вычисления обратной величины и экспоненциального преобразования, а блок функционального преобразования реализует заданную функциональную зависимость или в устройство введена цепочка последовательно соединенных блоков: вычисления обратной величины, аналогового инвертирования и экспоненциального преобразования, причем блок функционального преобразования в этом случае реализует другую заданную функциональную зависимость. Технический результат: повышение чувствительности к акустическому сопротивлению исследуемого материала. 2 ил.
Наверх