Способ и устройство для определения остаточных поверхностных напряжений

Изобретение относится к области точного машиностроения и может быть использовано в авиационном двигателестроении для выбора режимов механической обработки и оценки состояния поверхностного слоя материала через остаточные напряжения в резьбовых соединениях, дорожках качения подшипников, в контактных поверхностях зуба шестерен, а также в лопатках турбины и компрессора. Технический результат заключается в устранении нелинейности зависимости индуктивного сопротивления датчика от перемещения, уменьшении геометрических размеров контролируемого образца, снижении усилия воздействия системы на образец и уменьшении влияния агрессивной среды и инерционности конструкции. Сущностью изобретения является установление устройства передачи деформации, состоящего из кварцевой капиллярной трубки с электропроводящей фольгой на свободном конце, создание зазора между фольгой и индуктивным датчиком размером не более 2 мм и поддержание его постоянным за счет обратной связи, при этом производится фиксирование пиковых изменений деформаций, в том числе в начальный период. 2 с. и 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области точного машиностроения и может быть использовано в авиационном двигателестроении для выбора режимов механической обработки и оценки состояния поверхностного слоя материала через остаточные напряжения в резьбовых соединениях, дорожках качения подшипников, в контактных поверхностях зуба шестерен, а также в лопатках турбины и компрессора.

Известен способ определения остаточных напряжений по методу Н.Н.Давиденкова или методу стравливания анализируемого слоя, при котором подготавливают образец необходимых формы и размеров, жестко крепят в держатель (например, подвески), на поверхности образца и держателя, не подлежащие травлению, наносят слой воска или лака, на образец устанавливают устройство передачи деформации образца индуктивному датчику и погружают образец в ванну с электролитом до половины его толщины. В результате травления происходит деформация образца, записываемая на самописец. Затем вручную производится обработка результатов измерений (Методический материал «Определение остаточных напряжений в поверхностном слое пера лопаток двигателей», НИАТ, 1965).

Данный способ осуществляется в известном из того же источника устройстве - приборе «Пион-2», состоящем из образца, жестко закрепленного в держателе (например, подвесках), контактирующего с устройством передачи деформации, состоящим из металлического стержня и рычага, связанного через индуктивный датчик с электрическим самописцем. Образец помещен в ванну с электролитом.

Наиболее близким к предлагаемому изобретению, относящемуся к способу определения остаточных напряжений, является способ, аналогичный описанному выше, при котором процесс обработки результатов автоматизирован с помощью компьютера. (Т.Д.Кожина, Э.В.Киселев, А.Н.Постнов. Автоматизированное измерение остаточных напряжений поверхностного слоя детали. Сборник научных трудов, Ярославль, 1990, с.122-125).

Способ осуществляют следующим образом. Подготавливают образец необходимой формы, крепят винтами к держателю (к штанге или в подвески), на поверхности образца и держателя, не подлежащие травлению, наносят слой воска или лака, на образец устанавливают устройство передачи деформации образца индуктивному датчику и погружают образец в емкость с агрессивной жидкостью до соприкосновения с ней. Возникающая деформация образца, фиксируемая индуктивным датчиком, поступает в компьютер, производящий обработку результатов измерений.

Данный способ осуществляется в известном из того же источника устройстве, принятом за прототип, содержащем компьютер, связанный с индуктивным датчиком, образец, жестко закрепленный в держателе и контактирующий с устройством передачи его деформации, состоящим из металлического стержня и рычага. Образец погружен в емкость с агрессивной жидкостью.

Хотя процесс определения величин остаточных поверхностных напряжений существенно облегчается при использовании ЭВМ и достигаемая при этом точность определения заметно выше, чем при ручной обработке данных, но общими недостатками способов и устройств для их осуществления, принятых за аналог и прототип, являются значительное усилие на образец - до 300 г.с., связанное с большими размерами образца (длина 40-80 мм, ширина 4-6 мм, толщина 1,5-2,5 мм), значительная инерционность конструкции, нелинейная зависимость индуктивного сопротивления датчика от перемещения, приводящие к снижению точности измерений и сглаживанию пиковых изменений деформации, значительное воздействие агрессивной среды на датчик и окружение из-за большой емкости для электролита.

Предлагаемые изобретения направлены на достижение технического результата, заключающегося в устранении нелинейности зависимости индуктивного сопротивления датчика от перемещения, уменьшении геометрических размеров контролируемого образца, снижении усилия воздействия системы на образец и уменьшении влияния агрессивной среды и инерционности конструкции, что позволяет фиксировать пиковые изменения деформации, в том числе и в начале травления.

Для достижения указанного технического результата в предлагаемом способе определения остаточных поверхностных напряжений, включающем подготовку образца необходимой формы и размеров, жесткое крепление его в держателе, нанесение на поверхности образца и держателя, не подлежащие травлению, слоя защитного покрытия, установление на образец устройства передачи его деформации, погружение образца в емкость с агрессивной жидкостью для травления, измерение результатов деформации, обработка их с помощью компьютера, в отличие от известного на образец устанавливают устройство передачи деформации, состоящее из кварцевой капиллярной трубки с электропроводящей фольгой на свободном конце, создающее усилие на образец не более 0,5 г.с., создают зазор между фольгой и индуктивным датчиком размером не более 2 мм и поддерживают его постоянным за счет обратной связи, при этом фиксируют пиковые изменения деформаций, в том числе в начальный период. Образец помещают в емкость с агрессивной жидкостью на глубину не менее 2 мм.

Для достижения указанного технического результата в предлагаемом устройстве, состоящем из образца, закрепленного в держателе, контактирующего с устройством передачи деформации образца индуктивному датчику, связанному с компьютером, и погруженного в емкость с агрессивной жидкостью, в отличие от известного устройство передачи деформации образца выполнено в виде кварцевой капиллярной трубки, один конец которой опирается на образец, а другой жестко скреплен с электропроводящей фольгой, удаленной на зазор не более 2 мм от индуктивного датчика, снабженного системой обратной связи, состоящей из измерительного моста, компьютера, микродвигателя и микровинта, обеспечивающей постоянство зазора, при этом вес кварцевой капиллярной трубки с фольгой составляет не более 0,5 г.с., а длина образца от 5 мм.

Незначительный вес кварцевой капиллярной трубки с фольгой и наличие системы обратной связи позволяет поддерживать постоянство зазора между фольгой и индуктивным датчиком, снизить усилие на образец до 0,5 г.с. и исключить нелинейность зависимости индуктивного сопротивления датчика от перемещения.

Уменьшение размеров образца позволяет уменьшить зеркало испаряющейся агрессивной жидкости до 1 см2 и тем самым снизить влияние агрессивной среды.

Использование кварцевой капиллярной трубки и вывод термокомпенсатора в зону действия индуктивного датчика позволяют исключить зависимость производимых измерений от изменений температуры.

Незначительный вес образца позволяет исключить инерционность системы и фиксировать пиковые деформации, в том числе и в начале травления образца.

Предлагаемые изобретения иллюстрируются чертежом, на котором изображена схема устройства для осуществления предложенного способа определения остаточных напряжений.

Способ осуществляют в следующей последовательности.

Подготавливают образец необходимой формы (например, в виде бруса или классической балки) и размеров (длина от 0,5 мм), жестко крепят его в одну из прорезей держателя (например, штанги), на поверхности образца и держателя, не подлежащие травлению, наносят слой защитного покрытия (например, лака или воска). На образец устанавливают устройство передачи его деформации, состоящее из кварцевой капиллярной трубки с электропроводящей фольгой на свободном конце, создают зазор между фольгой и индуктивным датчиком размером не более 2 мм. При этом усилие на образец составляет не более 0,5 г.с. Образец погружают в емкость с агрессивной жидкостью на глубину не менее 2 мм. Для интенсификации процесса травления парциально добавляют активатор (например, Н2О2), при этом наблюдают за процессом, визуально определяя интенсивность травления. В результате травления происходит деформация образца и перемещение капиллярной трубки с фольгой относительно индуктивного датчика, т.е. изменение величины зазора между фольгой и индуктивным датчиком, что приводит к нарушению баланса измерительного моста и передаче сигнала компьютеру, командой с которого за счет обратной связи зазор восстанавливается, что исключает нелинейность зависимости индуктивного сопротивления датчика от перемещения. Возникающая деформация образца поступает в тот же компьютер, который производит и обработку результатов измерений. Процесс травления продолжают до получения полной эпюры распределения остаточных поверхностных напряжений. Затем образец снимают, производят замеры и наносят масштаб на полученную эпюру распределения напряжений.

Предлагаемое устройство для определения остаточных поверхностных напряжений (чертеж) состоит из образца 1, жестко закрепленного в держателе 2, контактирующего с устройством передачи деформации образца, состоящего из кварцевой капиллярной трубки 3 с закрепленной электропроводящей фольгой 4 на свободном конце и погруженного в емкость с агрессивной жидкостью 5 на глубину не менее 2 мм ниже уровня 6, измерительного моста 7, включающего индуктивный датчик 8 и термокомпенсатор 9, питающиеся от генератора высокой частоты 10. Индуктивный датчик 8 удален от фольги на зазор не более 2 мм и снабжен системой обратной связи, состоящей из последовательно соединенных измерительного моста 7, компьютера 11, микродвигателя 12 и микровинта 13.

Устройство работает следующим образом.

Образец 1 необходимой формы и размеров, жестко закрепленный в одной из прорезей держателя 2 (например, вклеенный консольно с помощью защитного покрытия), с установленной на нем одним концом кварцевой капиллярной трубкой 3, другой конец которой жестко скреплен с электропроводящей фольгой 4, отстоящей на зазор от индуктивного датчика 8, погружен в емкость с агрессивной жидкостью 5 на глубину не менее 2 мм ниже уровня 6. В результате непрерывного травления происходят деформация образца, перемещение кварцевой капиллярной трубки с фольгой и изменение зазора между фольгой 4 и индуктивным датчиком 8, которое вызывает нарушение баланса измерительного моста 7, питаемого генератором 10. Сигнал разбаланса поступает в компьютер 11, который благодаря наличию обратной связи с индуктивным датчиком 8, посылает сигнал на микродвигатель 12, который через поворот микровинта 13 восстанавливает зазор. Термокомпенсатор 9 исключает температурное воздействие на индуктивный датчик 8. Компьютер 11 также обрабатывает результаты измерений. Цикл повторяется до построения полной эпюры распределения остаточных поверхностных напряжений по глубине.

Пример.

Для определения причин появления трещин на резьбе вала было создано устройство, состоящее из образца в форме балочки (длина 5-10 мм, в зависимости от выбранного участка; ширина 2 мм; толщина 0,5 мм), закрепленного консольно путем вклеивания с помощью лака в одну из прорезей штанги с установленной на него кварцевой капиллярной трубкой длиной 50-120 мм и наружным диаметром 1,2 мм с электропроводящей фольгой на свободном конце. Минимальная толщина фольги не ограничивалась, т.к. глубина проникновения электромагнитного поля при частоте 5 МГц не превышает 10 мкм. Образец погружали на глубину 5-7 мм в емкость с кислотой, с площадью испарения 1 см2. В качестве микровинта использовался винт со шкалой от микрометра. Вес кварцевой капиллярной трубки с фольгой составлял 0,3 г.с.

Таким образом, предложенное изобретение позволяет значительно упростить и ускорить процесс определения остаточных поверхностных напряжений при значительном уменьшении сглаживания пиковых напряжений, а вырезка образцов проволокой на электроэрозионном станке позволяет выдерживать соотношение толщины образца и его длины в пределах 1:20, что обеспечивает необходимую чувствительность метода.

1. Способ определения остаточных поверхностных напряжений, включающий подготовку образца необходимой формы и размеров, жесткое крепление его в держателе, нанесение на поверхности образца и держателя не подлежащего травлению слоя защитного покрытия, установление на образец устройства передачи его деформации, погружение образца в емкость с агрессивной жидкостью для травления, измерение результатов деформации, обработка их с помощью компьютера, отличающийся тем, что на образец устанавливают устройство передачи деформации, состоящее из кварцевой капиллярной трубки с электропроводящей фольгой на свободном конце, создающее усилие на образец не более 0,5 гс, создают зазор между фольгой и индуктивным датчиком размером не более 2 мм и поддерживают его постоянным за счет обратной связи, при этом фиксируют пиковые изменения деформаций, в том числе в начальный период.

2. Способ по п.1, отличающийся тем, что образец помещают в емкость с агрессивной жидкостью на глубину не менее 2 мм.

3. Устройство для определения остаточных поверхностных напряжений, состоящее из образца, закрепленного в держателе, контактирующего с устройством передачи деформации образца индуктивному датчику, связанному с компьютером, и погруженного в емкость с агрессивной жидкостью, отличающееся тем, что устройство передачи деформации образца выполнено в виде кварцевой капиллярной трубки, один конец которой опирается на образец, а другой жестко скреплен с электропроводящей фольгой, удаленной на зазор не более 2 мм от индуктивного датчика, снабженного системой обратной связи, состоящей из измерительного моста, компьютера, микродвигателя и микровинта, обеспечивающей постоянство зазора, при этом вес кварцевой капиллярной трубки с фольгой составляет не более 0,5 гс, а длина образца от 5 мм.



 

Похожие патенты:

Изобретение относится к области кузнечно-штампового оборудования, а именно к устройствам для измерения усилий прессов. .

Изобретение относится к области измерительной техники и может быть использовано для измерения остаточных напряжений в поверхностном слое изделий и образцов, подвергшихся обработке различного вида.

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике, в частности к устройствам для измерения усилий при редуцировании. .

Изобретение относится к измерительной технике, а именно к области измерения максимального значения компоненты тензора напряжений в исследуемой среде. .

Изобретение относится к контрольноизмерительной технике и мсхет быть ис- , lOfli JOBcHo для измерения статических и ,iV . .

Изобретение относится к весоизмерительной технике. .

Изобретение относится к измерению напряжений путем оценки величины остаточных явлений при разрушении чувствительного элемента от импульсных воздействий и позволяет измерять нормальную компоненту напряженного состояния в различных средах (твердых, жидких, газообразных) независимо от амплитудно-временных характеристик действующих воздействий.

Изобретение относится к силоизмерительной технике. .

Изобретение относится к измерительной технике и м.б. .

Изобретение относится к контролю общих остаточных деформаций транспортных и/или стояночных средств, в частности корпусов судов
Изобретение относится к области оценки технического состояния конструкций и может быть использовано для определения механических напряжений, например, в стальных трубопроводах надземной прокладки

Изобретение относится к машиностроению, а именно к измерительной технике, и может быть использовано при определении физико-механического состояния материала образцов как с электропроводными покрытиями, так и без электропроводных покрытий

Изобретение относится к области строительной механики и может быть использовано при проектировании несущих арочных покрытий из тонколистовых холодногнутых профилей

Изобретение относится к сварке, в частности к способам определения деформаций и напряжений при сварке металлических конструкций и их последующей эксплуатации преимущественно из углеродистых и низколегированных сталей, и может быть использовано при изготовлении и техническом обследовании сварных конструкций в любых отраслях промышленности. Сущность: в качестве контролируемой зоны выбирают участок изделия, находящегося под нагрузкой, нагревают участок, создавая в нем пластическую деформацию. Измерение размера контролируемой зоны производят датчиками перемещения до и после нагрева, и по изменению ее размера судят о напряженном состоянии металла до начала нагрева. Диаметр зоны нагрева выбирают из условия A=(1,3-5,0)d, где d - диаметр зоны нагрева, А - диаметр базы измерения контролируемой зоны. Технический результат: повышение достоверности оценки прочности и ресурса сварных конструкций путем экспериментального определения их напряженного состояния. 2 з.п. ф-лы, 2 ил.

Изобретение относится к средствам определения механических напряжений, в том числе при изготовлении и последующей эксплуатации металлических конструкций преимущественно из углеродистых и низколегированных сталей, и может быть использовано при изготовлении и техническом обследовании конструкций в любых отраслях промышленности. Устройство содержит средство для проявления механических напряжений посредством контактного энергетического воздействия в зоне небольшого участка в пределах исследуемой поверхности конструкции и соответствующих деформационных перемещений от воздействия, систему измерений указанных деформационных перемещений по границам участка с их оперативной регистрацией и пересчетом в механические напряжения, и средства жесткого крепления устройства на исследуемой поверхности. Средство для проявления механических напряжений выполнены в виде источника тепловой энергии с возможностью временного контакта его рабочего органа с указанным участком поверхности для передачи туда фиксированного количества теплоты, требуемого для пластической деформации указанного участка под действием определяемых механических напряжений и в результате временного нагрева участка до температуры существенного снижения предела текучести материала и наступления пластической деформации участка, но не до его плавления, и последующего остывания участка. Система измерений деформационных перемещений точек на поверхности упругодеформируемой пограничной зоны вокруг указанного пластически деформированного участка выполнена в виде диаметрально расположенных от центра устройства пар в разных угловых направлениях датчиков микромеханических перемещений, концы которых жестко закреплены в указанной пограничной зоне. Технический результат: возможность получить все компоненты напряжений, возникших в процессе изготовления, в период эксплуатации, а также суммарный уровень технологических и эксплуатационных напряжений без повреждения поверхности исследуемой металлической конструкции. 2 з.п. ф-лы. 1 табл., 3 ил.

Изобретение относится к измерительной технике и может быть использовано для определения остаточных напряжений в восстановленных деталях методом электронной спекл-интерферометрии. Способ определения поверхностных остаточных напряжений осуществляют путем регистрации рассеянного исследуемой поверхностью детали светового поля, соответствующего начальному состоянию поверхности детали, с помощью оптической измерительной системы, источником излучения которой является лазер. При этом вдавливают в испытуемый материал детали конический индентор до образования отпечатка, регистрируют рассеянное исследуемой поверхностью детали световое поле, соответствующего ее состоянию после воздействия индентора; получают интерферограммы путем вычитания двух записанных световых полей, которая является распределением нормальных перемещений в наплыве вокруг отпечатка; регистрации диаметра отпечатка. Далее вычисляют координаты контрольных точек на осях симметрии отпечатка; определяют порядковые номера проходящих через контрольные точки интерференционных полос и определяют максимальные вертикальные перемещения в наплыве вокруг отпечатка в контрольных точках по формуле: где Ν - номер полосы, λ - длина волны лазера; и определяют остаточные напряжения с помощью всех полученных данных по формуле: где оси x и y направлены вдоль осей симметрии зарегистрированного распределения перемещений; σт - предел текучести материала поверхностного слоя детали; ΔW - разность между измеренной при диагностировании остаточных напряжений величиной нормального перемещения Wσ в контрольной точке и базовым перемещением Wrm. Технический результат - снижение воздействия на исследуемую поверхность детали и уменьшение усилия вдавливания. 2 ил.

Изобретение относится к области машиностроения и предназначено для определения остаточных технологических напряжений в поверхностных слоях детали, полученных при механической обработке. Сущность: осуществляют вырезку образца в форме стержня прямоугольного сечения. С образца снимают тонкие слои материала, начиная со слоя минимальной толщины 8-12 мкм и увеличивая толщины последующих слоев до значения не более 35 мкм последнего слоя. Определяют толщину каждого снятого тонкого слоя и приращение прогиба образца, вызванное каждым снятым тонким слоем, затем рассчитывают остаточные напряжения в тонких слоях материала по формуле. Технический результат: упрощение способа, снижение трудоемкости и повышение точности определения остаточных напряжений в поверхностных слоях детали. 1 таб., 4 ил.

Изобретение относится к области экспериментальной механики и предназначено для определения остаточных напряжений, возникающих при изготовлении тонкостенных конструкций летательных аппаратов из композиционных материалов. Технический результат от реализации данного изобретения заключается в повышении точности измерения остаточных напряжений, а также повышении ресурса и надежности элементов конструкций при их эксплуатации за счет учета вклада остаточных напряжений в общее напряженно-деформированное состояние. Способ определения остаточных напряжений в материале детали включает в себя установку образца в виде прямоугольной пластины в оптическую схему интерферометра, регистрацию спекл-структуры на поверхности образца в исходном состоянии высокоразрешающей видеокамерой, удаление образца из оптической схемы интерферометра, высверливание зондирующего отверстия, возвращение образца в исходное положение, регистрацию спекл-структуры деформированной поверхности образца, визуализацию картин интерференционных полос путем численного вычитания двух полученных ранее изображений, определение приращения диаметров зондирующего отверстия в направлении главных остаточных напряжений, вычисление компонент главных остаточных напряжений по формулам, вытекающим из теоретического решения о концентрации напряжений на контуре сквозного кругового отверстия в пластине при ее растяжении в произвольном направлении по отношению к главным осям анизотропии. 8 ил.

Изобретение относится к области авиастроения и предназначено для определения остаточных напряжений в поверхностных слоях деталей с радиусными переходами большой кривизны, например в зоне скругленной кромки лопатки турбины и компрессора. Сущность изобретения: осуществляют вырезку плоской заготовки, изготовление криволинейного образца прямоугольного сечения, последовательное снятие поверхностных слоев материала с остаточными напряжениями, чередующееся с определением геометрических параметров образца, выполнение расчетов с использованием формул и полученных в эксперименте геометрических параметров. Для определения остаточных напряжений используют образец V-образной формы с радиусом скругления криволинейной части R=1…3 и более мм, с дугой ABC с центральным углом φ≈126°±5°, с двумя концами-удлинителями, разведенными на угол α и образующими расчетный угол β≈126°±5°. Слои материала с остаточными тангенциальными напряжениями снимают на участке выпуклой поверхности криволинейной части с дугой ABC, после каждого снятого слоя измеряют толщину t криволинейной части, высоту Н образца, ширину А в основании образца, угол α развода удлинителей. При выполнении расчетов вначале определяют дополнительные параметры криволинейной части образца: расчетный угол β развода удлинителей, хорду а, стрелу h и радиус R дуги ABC, радиус r нейтральной линии изгиба и радиус ρ оси, смещение е между r и ρ, расстояние у от дуги радиусом r до выпуклой поверхности, используя формулы. После чего рассчитывают остаточные тангенциальные напряжения σi в поверхностных слоях материала, начиная с первого слоя, по формуле. Технический результат: возможность определения тангенциальных остаточных напряжений в зоне кромки пера лопатки с радиусом скругления 1…3 мм и более. 2 ил.
Наверх