Трубопровод с электроподогревом и способ его изготовления

Изобретение относится к строительству трубопроводного транспорта и используется при сооружении трубопроводов, транспортирующих вязкие и легкозастывающие продукты. Трубопровод содержит теплоизоляционный, гидроизоляционный слои, резистивные электронагреватели с низкотемпературными выводами, подключенными к источнику питания посредством токонесущих проводов. Электронагреватели выполнены в виде токопроводящей ткани и состоят из электропроводящих тепловыделяющих нитей, расположенных параллельно краевым электродам из мишурных нитей. Перпендикулярно к электропроводящим тепловыделяющим нитям и мишурным нитям краевых электродов по длине резистивного электронагревателя равномерно распределены выполненные из мишурных нитей дополнительные и токораспределительные электроды. В токопроводящей ткани в массиве электроизоляционных нитей вырубают периферийные зоны всех токораспределительных и часть периферийных зон дополнительных электродов. Периферийные зоны дополнительных электродов вырубают с чередованием с одной и с другой стороны массива из электропроводящих тепловыделяющих нитей с образованием коммутационной гребенки. На законцовки краевого и дополнительного электродов резистивного электронагревателя припаивают клеммные токоподводы из медной фольги, облуженной оловом, со шнуром питания. Обеспечивает равномерное температурное поле на внутренней поверхности трубопровода. 2 н. и 3 з.п. ф-лы, 6 ил.

 

Изобретение относится к строительству трубопроводов с электроподогревом, предназначенных для транспортировки вязких и легкозастывающих продуктов (нефтепродукты с высоким содержанием парафина, синтетические смолы, мастики и т.п.), легкозамерзающих продуктов (вода и т.п.) в зимний период эксплуатации, а также в различных областях техники при изготовлении стеклопластиковых конструкций контейнерного типа со встроенной системой термостатирования.

Известна стеклопластиковая труба-оболочка, включающая расположенные между слоями наполнителя прессованные стрингеры и облицованная изнутри неметаллическими нагревателями (см. А.С. СССР №323285, кл. В 29 G 5/00, 1970 г.).

Также известна стеклопластиковая труба-оболочка, выполненная из отдельных панелей, состоящих из наружного и внутреннего слоев стеклопластика, облицованная изнутри гибкими нагревателями, при этом между панелями размещены упругие манжеты, закрепленные на стрингерах, а снаружи трубы установлен механизм изменения положения панелей, закрепленный на ее наружной поверхности (см. А.С. СССР №866324, кл. F 16 L 9/12, 1981 г.).

Также известен трубопровод с электроподогревом, содержащий собственно трубопровод с теплоизоляционными и гидроизоляционными слоями, резистивные электронагреватели с низкотемпературными выводами, подключенными к источнику питания посредством токонесущих проводов (см. А.С. СССР №987266, кл. F 16 L 53/00, 1983 г.).

Основным недостатком известных конструкций является неравномерность температурного поля на поверхности изделий, что обусловлено наличием на внутренней поверхности комплекта самостоятельных нагревательных элементов (в случае стеклопластиковой трубы-оболочки) и непрерывного резистивного элемента в виде ленты, уложенной по винтовой линии с определенным шагом в массе трубопровода (в случае трубопровода с электроподогревом). Также необходимо отметить, что в обоих случаях регулирование теплового режима внутреннего объема изделий весьма сложно и требует дополнительных конструктивных элементов в виде механизма изменения положения панелей (стеклопластиковая труба-оболочка) и полого кольцевого элемента, закрепленного на трубопроводе посредством зажимного механизма со специальной разделкой концов резистивного элемента и токоведущих проводов (трубопровод с электроподогревом).

Ближайшим аналогом, выбранным в качестве прототипа, является изобретение по авторскому свидетельству СССР №987266 от 13.07.1981 г., кл. F 16 L 53/00.

Основной задачей разработки является создание трубопровода с электроподогревом, в котором были бы исключены перечисленные недостатки, т.е. трубопровод должен обеспечивать равномерное температурное поле на внутренней поверхности трубопровода и быть технологичным при изготовлении с минимальными трудозатратами и количеством операционных циклов.

Техническим результатом, который может быть получен от использования изобретения, является повышение надежности и работоспособности трубопровода с электроподогревом.

Основная задача решена и технический результат достигнут за счет того, что в трубопроводе с электроподогревом, содержащем собственно трубопровод с теплоизоляционными и гидроизоляционными слоями, резистивные электронагреватели с низкотемпературными выводами, подключенные к источнику питания посредством токонесущих проводов, согласно изобретению, резистивные электронагреватели выполнены в виде токопроводящей ткани и состоят из электропроводящих тепловыделяющих нитей, расположенных параллельно краевым электродам из мишурных нитей и разнесенных от них электроизоляционными нитями, а перпендикулярно к электропроводящим тепловыделяющим нитям и мишурным нитям краевых электродов по длине резистивного электронагревателя равномерно распределены дополнительные и токораспределительные электроды, выполненные из мишурных нитей.

Также, согласно изобретению, в резистивном электронагревателе в виде токопроводящей ткани в массиве электроизоляционных нитей, контактирующих с одной стороны с краевыми электродами, а с другой стороны с массивом из электропроводящих тепловыделяющих нитей, вырубают периферийные зоны всех токораспределительных и часть периферийных зон дополнительных электродов, причем периферийные зоны дополнительных электродов вырубают с чередованием то с одной, то с другой стороны массива из электропроводящих тепловыделяющих нитей с образованием коммутационной гребенки заданного резистивного электронагревателя, а на законцовки краевого и дополнительного электродов резистивного электронагревателя припаивают клеммные токоподводы из медной фольги, облуженной оловом, со шнуром питания.

Также, согласно изобретению, на наружную поверхность трубопровода в расчетной зоне обогрева укладывают резистивный электронагреватель с последующей намоткой слоя стеклопластика холодного отверждения, оставляя выступающими законцовки шнура питания резистивного электронагревателя.

Также, согласно изобретению, на наружную поверхность трубопровода в расчетной зоне обогрева наматывают первичный слой липкой ленты, затем укладывают на него резистивный электронагреватель с последующей намоткой вторичного слоя липкой ленты, далее наматывают слой стеклопластика холодного отверждения, оставляя выступающими законцовки шнура питания резистивного электронагревателя.

Также, согласно изобретению, на металлическую оправку наматывают первичный слой стеклопластика с гидроизоляционным слоем или без него, в расчетной зоне обогрева укладывают резистивный электронагреватель, далее наматывают вторичный слой стеклопластика с гидроизоляционным слоем или без него, оставляя выступающими законцовки шнура питания резистивного электронагревателя, после чего трубопровод термообрабатывают по режиму структурирования полимерного связующего.

Отличительные признаки являются существенными, поскольку каждый из них в отдельности и совместно направлен на решение поставленной задачи и достижение нового технического результата.

Использование резистивных электронагревателей в виде токопроводящей ткани из электропроводящих тепловыделяющих нитей, электроизоляционных нитей и мишурных нитей с продольно-поперечной коммутационной схемой обеспечит высокую технологичность в процессе переработки в изделие.

Изготовление резистивного электронагревателя путем вырубки периферийных зон дополнительных электродов с чередованием то с одной, то с другой стороны и вырубки периферийных зон токораспределительных электродов по обе стороны массива электропроводящих тепловыделяющих нитей позволит обеспечить использование резистивного электронагревателя на любое значение питающего напряжения и повысить его эксплуатационную надежность.

Нанесение на наружную поверхность трубопровода резистивного электронагревателя, размещенного между двумя слоями липкой ленты из полиэтилена с последующей намоткой слоя стеклопластика на основе стеклоленты, пропитанной клеем холодного отверждения, позволит обеспечить прогрев в заданном месте трубопровода с сохранением электрических характеристик электропроводящих тепловыделяющих нитей.

Размещение резистивных электронагревателей между первичным слоем и вторичным слоем стеклопластика на основе стекложгута, стеклоленты или стеклоткани, пропитанной полимерным связующим, выполненных с ними за одно целое, позволит повысить технологичность и снизить себестоимость изделия.

Указанные отличительные существенные признаки являются новыми, так как их использование в известном уровне техники, аналогах и прототипе не обнаружено, что позволяет характеризовать предложенное техническое решение, соответствующее критерию «новизна».

Единая совокупность новых существенных признаков с общими известными существенными признаками позволяет решить поставленную задачу и достичь новых технических результатов, что позволяет характеризовать новое техническое решение существенными отличиями по сравнению с известным уровнем техники, аналогами и прототипом. Новое техническое решение является результатом опытно-конструкторской отработки и творческого вклада, получено без использования стандартных проектировочных решений или каких-либо рекомендаций, по своей оригинальности и содержательности исполнения соответствует критерию «изобретательский уровень».

На фиг.1 представлен резистивный электронагреватель в виде токопроводящей ткани из электропроводящих тепловыделяющих нитей, электроизоляционных и мишурных нитей. На фиг.2 представлен готовый к использованию резистивный электронагреватель. На фиг.3 представлены различные варианты исполнения резистивного электронагревателя. На фиг.4 представлен трубопровод с электроподогревом, в котором резистивный электронагреватель размещен на поверхности трубопровода с последующей намоткой слоя стеклопластика холодного отверждения. На фиг.5 представлен трубопровод с электроподогревом, в котором резистивный электронагреватель размещен на поверхности трубопровода между слоями липкой ленты с последующей намоткой слоя стеклопластика холодного отверждения. На фиг.6 представлен трубопровод с электроподогревом, в котором резистивный электронагреватель размещен в массе стеклопластика и выполнен с трубопроводом за одно целое.

Резистивный электронагреватель в виде токопроводящей ткани, представленный на фиг.1, содержит электропроводящие тепловыделяющие нити 1, расположенные параллельно краевым электродам 2 из мишурных нитей и разнесенные от них электроизоляционными нитями 3, а перпендикулярно к электропроводящим тепловыделяющим нитям 1 и мишурным нитям краевых электродов 2 по длине резистивного электронагревателя равномерно распределены дополнительные 4 и токораспределительные 5 электроды, выполненные из мишурных нитей.

В соответствии со способом изготовления резистивного электронагревателя, представленного на фиг.2, из токопроводящей ткани вырезают заготовку резистивного электронагревателя заданной геометрии, далее в массиве электроизоляционных нитей 3, контактирующих с одной стороны с краевыми электродами 2, а с другой стороны с массивом из электропроводящих тепловыделяющих нитей 1, вырубают периферийные зоны 7 всех токораспределительных 5 и часть периферийных зон 6 дополнительных электродов 4, причем периферийные зоны 6 дополнительных электродов 4 вырубают с чередованием то с одной, то с другой стороны массива из электропроводящих тепловыделяющих нитей 1 с образованием коммутационной гребенки заданного резистивного электронагревателя, а на законцовки краевого 2 и дополнительного 4 электродов резистивного электронагревателя припаивают клеммные токоподводы 8 из медной фольги, облуженной оловом, со шнуром питания 9.

На фиг.1 дополнительные и токораспределительные электроды показаны одной позицией 4, 5, а на фиг.2 дополнительные и токораспределительные электроды показаны разными позициями 4 и 5. Это обусловлено тем, что в структуре токопроводящей ткани эти электроды равнофункциональны, т.е. ничем не отличаются друг от друга. В структуре же резистивного электронагревателя дополнительные и токораспределительные электроды по своей функциональности используются по разному назначению: дополнительные электроды служат для создания коммутационной гребенки, обеспечивающей подачу питающего напряжения на электропроводящие тепловыделяющие нити, а токораспределительные - для перераспределения тока в случае нарушения целостности электропроводящей тепловыделяющей нити (или пучка нитей) на неповрежденные электропроводящие тепловыделяющие нити с повышением работоспособности и эксплуатационной надежности резистивного электронагревателя.

На фиг.3 представлены различные варианты исполнения резистивного электронагревателя. На фиг.3а дополнительные 4 и токораспределительные 5 электроды резистивного электронагревателя распределены с чередованием 1+1, на фиг.3б дополнительные 4 и токораспределительные 5 электроды резистивного электронагревателя распределены с чередованием 1+3, т.е. в зависимости от заданных технических параметров (мощности, напряжения питания, габаритных размеров) количество дополнительных и токораспределительных электродов резистивного электронагревателя может изменяться.

Представленный на фиг.4 трубопровод с электроподогревом состоит из трубопровода, на поверхности которого размещен резистивный электронагреватель с последующей намоткой слоя стеклопластика холодного отверждения. Технология изготовления данного трубопровода с электроподогревом представляет собой процесс, в соответствии с которым на наружную поверхность трубопровода 1 в расчетной зоне обогрева укладывают резистивный электронагреватель 2, после чего наматывают слой стеклопластика 3 на основе стеклонити, стекложгута, стеклоленты или стеклоткани, предварительно пропитанной компаундом холодного отверждения, оставляя выступающими законцовки шнура питания 4 резистивного электронагревателя.

Представленный на фиг.5 трубопровод с электроподогревом состоит из трубопровода, на поверхности которого размещен резистивный электронагреватель между слоями липкой ленты с последующей намоткой слоя стеклопластика холодного отверждения. Технология изготовления данного трубопровода с электроподогревом представляет собой процесс, в соответствии с которым на наружную поверхность трубопровода 1 в расчетной зоне обогрева наматывают первичный слой липкой ленты 5, затем укладывают на него резистивный электронагреватель 2 с последующей намоткой вторичного слоя липкой ленты 6, далее наматывают слой стеклопластика 3 на основе стеклонити, стекложгута, стеклоленты или стеклоткани, предварительно пропитанной компаундом холодного отверждения, оставляя выступающими законцовки шнура питания 4 резистивного электронагревателя. По технологии изготовления допускается намотка первичного слоя липкой ленты 5 без использования вторичного слоя липкой ленты 6 либо намотка вторичного слоя липкой ленты 6 без использования первичного слоя липкой ленты 5.

Представленный на фиг.6 трубопровод с электроподогревом содержит резистивный электронагреватель, размещенный в массе стеклопластика и выполненный с ним за одно целое. Технология изготовления данного трубопровода с электроподогревом представляет собой процесс, в соответствии с которым на металлическую оправку наматывают первичный слой стеклопластика 1 на основе стеклонити, стекложгута, стеклоленты или стеклоткани, пропитанной полимерным связующим, с гидроизоляционным слоем или без него, в расчетной зоне обогрева укладывают резистивный электронагреватель 2, далее наматывают вторичный слой стеклопластика 3 на основе стеклонити, стекложгута, стеклоленты или стеклоткани, пропитанной полимерным связующим, с гидроизоляционным слоем или без него, оставляя выступающими законцовки шнура питания 4 резистивного электронагревателя, после чего трубопровод термообрабатывают по режиму структурирования полимерного связующего.

Одним из основных факторов качественности вышеуказанных трубопроводов с электроподогревом является стабильность температурного поля рабочей поверхности, которая определялась с помощью методики АЕВ 6-4667, основанной на регистрации теплового излучения любого физического тела с температурой, отличной от температуры абсолютного нуля, с использованием тепловизорного комплекса, обеспечивающего бесконтактную регистрацию теплового излучения.

После подключения трубопровода с электроподогревом к источнику питания при прохождении тока через резистивный электронагреватель происходит превращение электрической энергии в тепловую, при этом рабочая поверхность трубопровода с электроподогревом становится источником электромагнитного излучения с максимумом в инфракрасной области спектра. Это излучение принимается приемником, выходной сигнал которого пропорционален интенсивности излучения, попадающего на чувствительную площадку приемника.

При использовании тепловизорного комплекса "Радуга-5" в результате оптико-механического сканирования рабочей поверхности трубопровода с электроподогревом на многоэлементный приемник попадает излучение от каждой точки объекта. В пределах поля зрения на выходах приемника образуется видеоснимок, и после соответствующего усиления температуры температурное поле трубопровода с электроподогревом отображается в условных цветах. Измерение производилось в диапазоне температур от 0°С до 150°С с погрешностью не более 1°С. Результаты испытаний показали, что разброс температур по рабочей поверхности вышеуказанных трубопроводов с электроподогревом составляет 1,5-2,0°С.

Испытания разработанных трубопроводов с электроподогревом с использованием нового решения, изготовленных опытно-промышленным способом, показали положительные результаты и в настоящее время уже нашли широкое применение в промышленности в области создания наземных систем пожаротушения в самых жестких климатических условиях.

Таким образом, предложенное новое техническое решение в указанной совокупности существенных признаков соответствует критерию "промышленная применимость", т.е. уровню изобретения.

1. Трубопровод с электроподогревом, содержащий собственно трубопровод с теплоизоляционными и гидроизоляционными слоями, резистивные электронагреватели с низкотемпературными выводами, подключенные к источнику питания посредством токонесущих проводов, отличающийся тем, что резистивные электронагреватели выполнены в виде токопроводящей ткани и состоят из электропроводящих тепловыделяющих нитей, которые расположены параллельно краевым электродам из мишурных нитей и разнесены от них электроизоляционными нитями, а перпендикулярно электропроводящим тепловыделяющим нитям и мишурным нитям краевых электродов по длине резистивного электронагревателя равномерно распределены дополнительные и токораспределительные электроды, выполненные из мишурных нитей.

2. Способ изготовления трубопровода с электроподогревом по п.1, отличающийся тем, что в резистивном электронагревателе в виде токопроводящей ткани в массиве электроизоляционных нитей, контактирующих с одной стороны с краевыми электродами, а с другой стороны с массивом из электропроводящих тепловыделяющих нитей, вырубают периферийные зоны всех токораспределительных и часть периферийных зон дополнительных электродов, причем периферийные зоны дополнительных электродов вырубают с чередованием то с одной, то с другой стороны массива из электропроводящих тепловыделяющих нитей с образованием коммутационной гребенки заданного резистивного электронагревателя, а на законцовки краевого и дополнительного электродов резистивного электронагревателя припаивают клеммные токоподводы из медной фольги, облуженной оловом, со шнуром питания.

3. Способ изготовления трубопровода с электроподогревом по п.2, отличающийся тем, что на наружную поверхность трубопровода в расчетной зоне обогрева укладывают резистивный электронагреватель с последующей намоткой слоя стеклопластика холодного отверждения, оставляя выступающими законцовки шнура питания резистивного электронагревателя.

4. Способ изготовления трубопровода с электроподогревом по п.2, отличающийся тем, что на наружную поверхность трубопровода в расчетной зоне обогрева наматывают первичный слой липкой ленты, затем укладывают на него резистивный электронагреватель с последующей намоткой вторичного слоя липкой ленты, далее наматывают слой стеклопластика холодного отверждения, оставляя выступающими законцовки шнура питания резистивного электронагревателя.

5. Способ изготовления трубопровода с электроподогревом по п.2, отличающийся тем, что на металлическую оправку наматывают первичный слой стеклопластика с гидроизоляционным слоем или без него, в расчетной зоне обогрева укладывают резистивный электронагреватель, далее наматывают вторичный слой стеклопластика с гидроизоляционным слоем или без него, оставляя выступающими законцовки шнура питания резистивного электронагревателя, после чего трубопровод термообрабатывают по режиму структурирования полимерного связующего.



 

Похожие патенты:

Изобретение относится к строительству трубопроводного транспорта и используется в нефтяной и газовой промышленности при ремонте нефте- и газопроводов. .
Изобретение относится к криогенной технике, а именно к способам герметизации соединений трубопроводов, работающих при экстремально низких температурах, и может быть использовано в ракетно-космической, авиационной, ядерной, судостроительной и других отраслях промышленности.

Изобретение относится к газонефтяной промышленности и может быть использовано в процессах промысловой и заводской обработки углеводородного газа, в частности при охлаждении углеводородного газа после дожимных компрессоров перед последующей осушкой и подготовкой к транспорту.

Изобретение относится к строительству трубопроводов, а именно к прокладке внутри здания в каналах низкотемпературной магистрали вблизи строительных конструкций и может быть использовано в энергетике, химической, пищевой и других отраслях, преимущественно эксплуатирующих трубопроводные магистрали с низкотемпературными веществами.

Изобретение относится к энергетическому машиностроению и может быть использовано для эффективного редуцирования магистрального газа на газораспределительных станциях и газорегуляторных пунктах.

Изобретение относится к устройствам, предназначенным для подогрева жидкостей и газов в обеспечение эффективности технологических процессов, и может быть использовано в различных отраслях промышленности, например, - для подогрева природного газа на входе газораспределительных станций с целью предотвращения процесса гидратообразования.

Изобретение относится к строительству и может найти применение при прокладке магистральных трубопроводов. .

Изобретение относится к равномерной нагревательной системе сквозного электрического тока подводных гибких трубопроводов, основанного на эффекте Джоуля, то есть тепло производится посредством циркуляции электрического тока через металлическое броневое покрытие трубопровода, в котором посредством нагревания или поддержания текущей температуры сырой нефти возможно уменьшить падение давления в трубопроводе и увеличить период текучести, при этом, следовательно, больше нефти будет извлечено.

Изобретение относится к криогенной технике, а именно к устройствам локального охлаждения фрагмента поверхности металлических конструкций криогенной жидкостью. .

Изобретение относится к соединениям трубопроводов, а именно к устройствам, предназначенным для обеспечения герметичности прогреваемых вакуумных установок, и может быть использовано в быстроразбираемых конструкциях вакуумных камер, в которых осуществляются различные виды термообработок, например, азотирование деталей или только их внутренних стенок.

Изобретение относится к области строительства и ремонта трубопроводов, а более конкретно к технологии нанесения изоляционного покрытия, предназначенного для защиты от почвенной коррозии магистральных трубопроводов

Изобретение относится к ремонту магистральных нефтепроводов без остановки перекачки и может быть использовано для подготовки наружной поверхности трубопроводов перед нанесением новых покрытий

Изобретение относится к транспортно-пусковым устройствам для ракет и используется в различных областях техники при изготовлении стеклопластиковых конструкций контейнерного типа со встроенной системой термостатирования

Изобретение относится к нефтяной и нефтехимической промышленности и может быть использовано в качестве подогревателей трубопроводов, предназначенных для транспортировки высоковязких продуктов, в частности для транспортировки нефти и нефтепродуктов

Изобретение относится к области электротермии и может быть использовано для поддержания температуры трубопроводов в рабочем диапазоне, а также для защиты от замораживания трубопроводов и стартового разогрева трубопроводов до рабочей температуры

Изобретение относится к жидкостным трубопроводам

Группа изобретений относится к трубопроводной арматуре. Соединитель для трубопровода для текучей среды содержит корпус (2), имеющий соединительный патрубок (3) для соединения с трубой (4) и соединительный геометрический элемент (7) для соединения с сопряженным элементом. Желательно вывести вспомогательный элемент из трубопровода для текучей среды таким образом, чтобы риск протечки был малым. С этой целью корпус (2) имеет выходное отверстие (9), через которое из корпуса (2) наружу выходит по меньшей мере один вспомогательный элемент (10, 11), при этом вспомогательный элемент (10, 11) проходит через эластомерное тело (12), которое при нагружении давлением параллельно направлению прохода через него вспомогательного элемента (10, 11) расширяется перпендикулярно к направлению прохода и которое при необходимости удерживается в выходном отверстии (9) при помощи удерживающего устройства (19, 20, 21). Технический результат заключается в уменьшении протечек текучей среды из трубопровода. 2 н. и 14 з.п. ф-лы, 5 ил.

Изобретение относится к трубопроводу для текучей среды. Трубопровод (1) для текучей среды содержит трубу (2), соединитель (3), имеющий соединительный патрубок (4) и установленный на одном конце трубы (2), и нагревательное устройство, расположенное в трубе (2). Нагревательное устройство выполнено в виде нагревательного стержня (12), проходящего из трубы (2) в соединительный патрубок (4) соединителя (3) и выходящего из соединителя (3) через отверстие (11). Отверстие (11) уплотнено при помощи кольцевого уплотнения (20), которое прилегает к нагревательному стержню (12), при этом предусмотрена пробка (21), которая удерживает кольцевое уплотнение (20) в соединителе (3) без сжимания указанного уплотнения (20). Изобретение повышает надежность трубопровода для текучей среды в эксплуатации. 8 з.п. ф-лы, 6 ил.
Наверх