Способ определения резонансной частоты, добротности и амплитуды стационарных резонансных колебаний

Изобретение относится к измерительной технике. Сущность: выявляют резонансную область частот объекта, определяют допустимый уровень возбуждающего воздействия с учетом заданной скорости изменения частоты при прохождении резонансной области, устанавливают гармоническое возбуждающее воздействие не более допустимого уровня, устанавливают частоту возбуждающего воздействия равной нижнему (верхнему) значению частоты резонансной области. Частоту возбуждающего воздействия увеличивают (уменьшают) с заданной скоростью. Измеряют и регистрируют параметры возбуждающего воздействия и параметры движения объекта как функции времени при условии нахождения частоты возбуждающего воздействия в резонансной области частот. По зарегистрированным параметрам движения объекта определяют спектральную плотность параметров движения объекта. По спектральной плотности судят о резонансной частоте, добротности и амплитуде стационарных резонансных колебаний объекта. Технический результат: уменьшение времени определения параметров и снижение вероятности поломок объекта. 2 ил.

 

Изобретение относится к машиностроению, а именно к способам определения резонансной частоты, добротности и амплитуды стационарных резонансных колебаний объектов.

Известен способ [А.с. СССР №3811020, G 01 N 11/16, 1973] определения декремента затухания, по которому возбуждают резонансные колебания исследуемого объекта, затем возбуждают колебания на нерезонансной частоте при воздействии на объект увеличенной вынуждающей силы, обеспечивающей получение амплитуды колебаний, равной амплитуде резонансных колебаний, логарифмический декремент определяют по формуле:

где ω - нерезонансная частота колебаний, Р - резонансная частота колебаний, В - постоянная, равная относительному повышению вынуждающей силы.

Недостатком известного способа является большое время измерений для нахождения резонансной частоты fp, добротности и амплитуды стационарных резонансных колебаний. Недостатком также является то, что он не позволяет определять резонансную частоту, добротность, амплитуду стационарных резонансных колебаний объектов, для которых недопустимы резонансы на стационарных режимах.

Наиболее близким к предлагаемому способу является способ [Патент РФ №2086943, Бюл. №22, 1997, G 01 М 7/ 02], в котором выявляют резонансную область частот (fн; fв), устанавливают возбуждающее воздействие фиксированного уровня на нижней границе частоты резонансной области fн, увеличивают частоту F возбуждающего воздействия со скоростью vf1, в процессе увеличения частоты F регистрируют амплитуды колебаний объекта как функцию частоты возбуждения f, определяют частоту fнв как частоту возбуждающего воздействия, выше которой наблюдается уменьшение амплитуды колебаний, прекращают увеличение частоты возбуждающего воздействия f; затем уменьшают частоту возбуждающего воздействия f со скоростью vf2, в процессе уменьшения частоты f регистрируют амплитуды колебаний объекта как функцию частоты возбуждения f и определяют частоту fвн как частоту возбуждающего воздействия, ниже которой наблюдается уменьшение амплитуды колебаний, прекращают уменьшение частоты f, повторяют операции 3-10 до нахождения резонансной частоты fp с требуемой точностью, регистрируют амплитуду резонансных колебаний Ар объекта на частоте fp, затем производят расстройку резонанса путем изменения частоты возбуждающего воздействия до некоторой случайно выбранной величины fp+Δf, регистрируют амплитуду колебаний Ад объекта на частоте fp+Δf, по совокупности значений Ар, Ад, fp, fp+Δf судят о добротности колебаний Q.

Недостатком известного способа является большое время измерений для нахождения резонансной частоты fp, добротности и амплитуды стационарных резонансных колебаний. При случайной расстройке частоты f в области малых Δf, погрешность определения Δf существенно влияет на точность определения логарифмического декремента затухания. Также недостатком известного способа является то, что он не позволяет определять резонансную частоту, добротность, амплитуду стационарных резонансных колебаний объектов, для которых недопустимы резонансы на стационарных режимах. Известный способ не позволяет определять резонансную частоту, добротность, амплитуду стационарных резонансных колебаний объекта в динамических режимах.

Поставлена задача определения резонансной частоты, добротности и амплитуды стационарных резонансных колебаний без остановок и задержек на резонансных частотах, что уменьшит вероятность поломок объекта, а также уменьшит время определения резонансной частоты, добротности и амплитуды стационарных резонансных колебаний.

Поставленная задача достигается за счет того, что в способе определения резонансной частоты, добротности и амплитуды стационарных резонансных колебаний выявляют резонансную область частот (fн; fв), определяют допустимый уровень возбуждающего воздействия с учетом заданной скорости vf изменения частоты при прохождении резонансной области, устанавливают гармоническое возбуждающее воздействие не более допустимого уровня, устанавливают частоту возбуждающего воздействия равной нижнему fн (верхнему fв) значению частоты резонансной области, частоту F возбуждающего воздействия увеличивают (уменьшают) с заданной скоростью vf, измеряют и регистрируют параметры возбуждающего воздействия E(t) и параметры движения объекта x(t) как функции времени t при условии нахождения частоты возбуждающего воздействия в резонансной области частот [fн; fв], по зарегистрированным значениям параметров возбуждающего воздействия E(t) и параметрам движения объекта x(t) как функций времени t судят о резонансной частоте fp, добротности Q и амплитуде стационарных резонансных колебаний объекта Ар.

Об амплитуде стационарных резонансных колебаний Ар, резонансной частоте fp и добротности Q судят следующим образом:

При изменении частоты F(t) возбуждающего воздействия E(t) как функции времени t по закону близкому к линейному по зарегистрированным параметрам движения объекта x(t) для всей резонансной области частот [fн; fв] определяют спектральную плотность параметров движения объекта x(f), по спектральной плотности параметров движения объекта x(f) судят о резонансной частоте fp и добротности Q колебательной системы объекта.

При изменении частоты F(t) возбуждающего воздействия E(t) как функции времени t по закону близкому к линейному по зарегистрированным параметрам движения объекта x(t) определяют наибольшую наблюдаемую амплитуду колебаний объекта Анаб, об амплитуде стационарных резонансных колебаний объекта Ар судят по значениям наибольшей наблюдаемой амплитуды колебаний объекта Анаб с учетом заданной скорости vf изменения частоты F возбуждающего воздействия и найденных значений добротности Q и резонансной частоты fp колебательной системы объекта, а о величине возбуждающего воздействия Е0 судят по отношению амплитуды стационарных резонансных колебаний объекта Ар к добротности Q.

По зарегистрированным параметрам движения объекта x(t) для всей резонансной области частот [fн; fв] определяют спектральную плотность параметров движения объекта x(f), по зарегистрированным значениям возбуждающего воздействия E(t) определяют спектральную плотность возбуждающего воздействия E(f), определяют функцию G(f) как отношение спектральной плотности параметров движения объекта x(f) к спектральной плотности возбуждающего воздействия E(f), о резонансной частоте fp и добротности Q колебательной системы объекта судят по функции G(f), определяют момент времени tp, при котором частота возбуждающего воздействия E(t) равна резонансной частоте fp, определяют амплитуду возбуждающего воздействия Е0 в момент времени tp, об амплитуде стационарных резонансных колебаний Ар судят по произведению модуля функции G(fp) на резонансной частоте fp колебательной системы объекта и амплитуды возбуждающего воздействия Е0 в момент времени tp.

Сущность способа поясняется схемами, представленными на фиг.1-2. На фиг.1 показаны в резонансной области частот зависимости спектральной плотности параметра движения объекта x(f) (сплошная линия) и параметра движения объекта x(t) как функция частоты f (ось времени пересчитана в соответствующие значения частоты возбуждающего воздействия F(t); зависимость параметра движения объекта x(t) от частоты f показана штриховой линией и для наглядности увеличена в 5 раз).

На фиг.2 показана взаимосвязь нормированного значения амплитуды колебаний от добротности Q и относительной скорости изменения частоты возбуждающей воздействия:

Определение резонансной частоты, добротности и амплитуды стационарных резонансных колебаний предлагаемым способом осуществляется следующим образом: выявляют резонансную область частот (fн; fв), определяют допустимый уровень возбуждающего воздействия с учетом заданной скорости vf изменения частоты при прохождении резонансной области, устанавливают гармоническое возбуждающее воздействие не более допустимого уровня, устанавливают частоту возбуждающего воздействия равной нижнему fн (верхнему fв) значению частоты резонансной области, частоту F возбуждающего воздействия увеличивают (уменьшают) с заданной скоростью vf, измеряют и регистрируют параметры возбуждающего воздействия E(t) и параметры движения объекта x(t) как функции времени t при условии нахождения частоты возбуждающего воздействия в резонансной области частот [fн; fв], по зарегистрированным значениям параметров возбуждающего воздействия E(t) и параметрам движения объекта x(t) как функций времени t судят о резонансной частоте fp, добротности Q и амплитуде стационарных резонансных колебаний объекта Ар.

Об амплитуде стационарных резонансных колебаний Ар, резонансной частоте fp и добротности Q судят следующим образом:

при изменении частоты F(t) возбуждающего воздействия E(t) как функции времени t по закону, близкому к линейному, по зарегистрированным параметрам движения объекта x(t) для всей резонансной области частот [fн; fв] определяют спектральную плотность параметров движения объекта x(f), о резонансной частоте fp колебательной системы объекта судят, например, по положению максимума спектральной плотности параметров движения объекта x(f), а о добротности Q колебательной системы объекта судят, например, по отношению резонансной частоты fp колебательной системы объекта к ширине зависимости спектральной плотности параметров движения объекта от частоты x(f) на общепринятом для определения полосы пропускания колебательных систем уровне или по уровню

по зарегистрированным параметрам движения объекта x(t) определяют наибольшую наблюдаемую амплитуду колебаний объекта Анаб. Используя - зависимости нормированного значения амплитуды колебаний при различных значениях добротности Q и различных значениях относительной скорости изменения частоты F возбуждающего воздействия и используя значения заданной скорости изменения частоты возбуждающего воздействия vf и добротности колебательной системы Q, определяют значение коэффициента нормирования значения амплитуды колебаний объекта;

значение резонансной амплитуды колебаний объекта Ар определяют путем деления наибольшей наблюдаемой амплитуды колебаний объекта Анаб на значение коэффициента нормирования значения амплитуды колебаний объекта.

Согласно предлагаемому способу при изменении по произвольному закону частоты F(t) возбуждающего воздействия E(t) как функции времени t и зарегистрированным во всей резонансной области [fн; fв] значениям возбуждающего воздействия E(t) для выделенного интервала времени [tн; tк] пребывания частоты F возбуждающего воздействия во всей резонансной области [fн; fв] находят спектральную плотность E(f) возбуждающего воздействия по формуле прямого преобразования Фурье:

Для того же самого выделенного интервала времени [tн; tк] также по формуле прямого преобразования Фурье находят спектральную плотность x(f) зарегистрированных как функцию времени параметров движения объекта x(t):

Реакция x(f) линейной системы в спектральной области связана с воздействием E(f) (Гоноровский И.С. Радиотехнические цепи и сигналы. Изд. 2-е. М.: Советское радио, 1971. - 672 с., ил.) соотношением:

где G(f) - частотная характеристика колебательной системы объекта.

Колебательные свойства, объекта могут быть определены по его частотной характеристике G(f), которую в свою очередь можно определить из выражения (3) как:

Если резонансная область [fн; fв] выбрана так, что колебательная система объекта содержит только одну резонансную частоту, то амплитудно-частотную характеристику колебательной системы объекта G(f) в резонансной области (Гоноровский И.С. Радиотехнические цепи и сигналы. 2-е. изд. М.: Советское радио, 1971. - 672 с., ил.) можно описать выражением вида:

где а - обобщенная расстройка характеризует основные свойства колебательной системы объекта:

здесь Δƒ=ƒ-ƒp - абсолютная расстройка; ƒp - резонансная частота колебательной системы объекта.

Для определения параметров колебательной системы объекта: добротности Q и резонансной частоты fp можно аппроксимировать модуль частотной характеристики |G(f)| модулем выражения (5), т.е.:

Максимальное значение функции |Ga(fp)| достигается на частоте f=fp, поэтому частоту, на которой достигается наибольшее значение модуля частотной характеристики |G(f)|, можно считать равной резонансной частоте колебательной системы объекта.

Добротность Q колебательной системы объекта можно определить с помощью выражения (7). Для этого находят частоту f1, для которой значения |Ga(f1)| уменьшаются по сравнению с резонансной в K1 раз, и частоту f2, для которой значения |Ga(f2)| уменьшаются по сравнению с резонансной в К2 раз, т.е.:

Из этих выражений можно определить добротность Q колебательной системы объекта по одной из следующих формул как:

или

Если из-за помех или других причин положение максимума функции |G(f)| определить затруднительно, то резонансную частоту также можно определить из выражения:

Влияние помех можно существенно уменьшить, если уровни K1 и К2, выбрать для таких частот f1 и f2, при которых функция |Ga(f)| имеет наибольшую крутизну. В этом случае частоты f1 и f2 определяют, приравнивая нулю вторые производные K1 и К2 по частоте выражений (8). После подстановки найденных значений частот f1 и f2 в выражения (8) получают оптимальные значения K1 и К2 равными:

В этом случае резонансную частоту fp и добротность Q определяют подстановкой значений K1 и К2 из выражения (12) в выражения (11) и (9). Получаем, что:

Если принять значения K1 и К2 на общепринятом для определения полосы пропускания колебательных систем уровне:

то из выражений (11) и (9) следует:

Определить амплитуду стационарных колебаний на резонансной частоте Ар для того же самого уровня возбуждающего воздействия, что и для динамического режима, можно по значению |Ga(fp)| на резонансной частоте, воспользовавшись тем, что по определению при условии, что E(t) является гармонической функцией.

Отсюда следует, что амплитуда стационарных резонансных колебаний Ар может быть определена по известной величине амплитуды возбуждающего воздействия Е0 в момент времени tp и найденному значению |Ga(fp)| на резонансной частоте fp как:

Ap=E0|Ga(fp)|.

При изменении частоты возбуждающего воздействия F(t) как функции времени t по закону, близкому к линейному, и постоянном уровне гармонического возбуждающего воздействия, спектральная плотность e(f) модели возбуждающего воздействия e(t) в резонансной области будет близка к функции постоянного уровня, т.е. будет мало зависеть от текущего значения частоты возбуждающего воздействия F(t), поэтому в качестве частотной характеристики G(f) для определения параметров колебательной системы объекта: добротности Q и резонансной частоты fp можно использовать спектральную плотность x(f) параметров движения объекта x(t), которая по форме будет ей близка.

Зависимости, показанные на фиг.2, получены из исследования колебательной системы, которая, как известно, описываются линейным неоднородным дифференциальным уравнением (л.н.д.у.) второго порядка. Считая, что возбуждающее воздействие на колебательную систему гармоническое с линейно изменяющейся во времени частотой ω=ωн+vft, свободный член дифференциального уравнения запишется в виде

С учетом сказанного, уравнение колебаний объекта можно будет записать в виде:

где x(t) - уравнение (функция) колебания объекта от времени;

δ - коэффициент затухания колебательной системы;

ω0 - резонансное значение угловой частоты колебаний объекта;

А0 - значение амплитуды ускорения, вызванного действующей на объект возбуждающим воздействием;

ωн - начальное значение угловой частоты колебаний объекта;

vf - скорость изменения частоты действующего на объект возбуждающего воздействия;

t - время;

ϕ0 - начальная фаза в уравнении колебаний объекта.

Зависимости нормированного значения амплитуды колебаний при различных значениях добротности Q и различных значениях относительной скорости изменения частоты F возбуждающего воздействия получены на основе аппроксимации множеств значений наблюдаемой амплитуды колебаний для случаев изменения частоты возбуждающего воздействия в направлении "снизу-вверх" и "сверху-вниз" от добротности колебательной системы и относительной скорости изменения частоты F возбуждающего воздействия.

Зависимости, показанные на фиг.1, получены из исследования линейного неоднородного дифференциального уравнения (л.н.д.у.) второго порядка с параметрами: добротность Q=30, резонансная частота 2πƒp=333 рад/с, скорость изменения частоты F возбуждающего воздействия vf=160 рад/с2, амплитуда ускорения, вызванная действующим на объект возбуждающим воздействием А0=100 м/с2.

Предлагаемый способ позволяет определять резонансную частоту, добротность, амплитуду стационарных резонансных колебаний объекта и уровень возбуждающего воздействия без остановок и задержек на резонансных частотах, что уменьшит вероятность поломок объекта в процессе эксплуатации; операции предлагаемого способа могут быть легко автоматизированы для проведения измерений, что во многих случаях позволит уменьшить время и квалификацию исследователя для определения необходимых параметров.

Способ определения резонансной частоты, добротности и амплитуды стационарных резонансных колебаний объекта, заключающийся в том, что выявляют резонансную область частот (fн; fв), определяют допустимый уровень возбуждающего воздействия для условия возбуждения объекта на резонансной частоте, устанавливают гармоническое возбуждающее воздействие не более допустимого уровня, устанавливают частоту возбуждающего воздействия равной нижнему fн (верхнему fв) значению частоты резонансной области, частоту F возбуждающего воздействия увеличивают (уменьшают) с заданной скоростью vf изменения частоты по закону, близкому к линейному, измеряют и регистрируют параметры возбуждающего воздействия и параметры движения объекта, отличающийся тем, что допустимый уровень возбуждающего воздействия определяют с учетом заданной скорости vf изменения частоты при прохождении резонансной области, измеряют и регистрируют параметры движения объекта x(t) как функции времени t при условии нахождения частоты возбуждающего воздействия в резонансной области частот [fн; fв], по зарегистрированным параметрам движения объекта x(t) для всей резонансной области частот [fн; fв] определяют спектральную плотность параметров движения объекта x(f), по спектральной плотности параметров движения объекта x(f) судят о резонансной частоте fp, добротности Q и амплитуде стационарных резонансных колебаний объекта Ар следующим образом:

о резонансной частоте fp колебательной системы объекта судят по положению максимума спектральной плотности параметров движения объекта x(f) или по среднеарифметическому значению частот, соответствующих относительному уровню зависимости спектральной плотности параметров движения объекта от частоты x(f), о добротности Q колебательной системы объекта судят по отношению резонансной частоты fp колебательной системы объекта к ширине зависимости спектральной плотности параметров движения объекта x(f) на общепринятом для определения полосы пропускания колебательных систем уровне или по отношению резонансной частоты fp к ширине зависимости спектральной плотности параметров движения объекта от частоты x(t) на относительном уровне , для определения резонансной амплитуды колебаний объекта Ар находят по зарегистрированным параметрам движения объекта x(t) наибольшую наблюдаемую амплитуду колебаний объекта Анаб, используя зависимости нормированного значения амплитуды колебаний , значения заданной скорости изменения частоты возбуждающего воздействия vf и добротности колебательной системы Q, находят значение коэффициента нормирования значения амплитуды колебаний объекта, а резонансную амплитуду колебаний объекта Ар определяют путем деления наибольшей наблюдаемой амплитуды колебаний объекта Анаб на значение коэффициента нормирования значения амплитуды колебаний объекта.



 

Похожие патенты:

Изобретение относится к прогнозированию характеристик собственных частот в подсистеме трубок, включающей закрытые кожухом сильфонные компоненты. .

Изобретение относится к машиностроению, а именно к способам определения резонансной частоты и добротности колебаний объекта. .

Изобретение относится к машиностроению, а именно к способам определения резонансной частоты, добротности, амплитуды стационарных резонансных колебаний объекта. .

Изобретение относится к методикам определения динамических характеристик конструкций балочной схемы при изгибных колебаниях. .

Изобретение относится к измерительной технике и может быть использовано для определения температурного коэффициента частоты у образцов из ферромагнитного материала.

Изобретение относится к области радиотехнических измерений и может быть использовано для прецизионного измерения двух параметров пьезоэлемета: собственной частоты и добротности в процессе изготовления радиокомпонентов, шлифования, напыления на пьезоэлектрическую подложку и других операций.

Изобретение относится к способам и устройствам для измерения частоты колебаний мультикантилевера

Изобретение относится к измерительной технике и может быть применено для контроля механических параметров строительных конструкций и настройки низкочастотных резонансных контуров

Изобретение относится к области измерительной техники и может быть использовано для контроля качества микромеханических элементов

Изобретение относится к авиадвигателестроению и может быть использовано при диагностике колебаний вращающихся лопаток ротора турбомашин

Изобретение относится к области приборостроения и может быть использовано для оценки акустики объемных помещений

Изобретение относится к энергомашиностроению и может быть использовано при прочностной аэродинамической доводке осевых турбин и компрессоров, а также при создании систем диагностики осевых турбомашин в авиации и энергомашиностроении

Изобретение относится к измерительной технике

Использование: для контроля добротности пьезорезонагоров. Сущность: возбуждают колебания пьезорезонатора в области резонанса путем воздействия на него электрическим синусоидальным напряжением с переменной частотой, одновременно выделяют активную составляющую проводимости и выполняют ее дифференцирование, на частотной характеристике производной от активной составляющей проводимости измеряют значение производной на частоте максимума, измеряют частоту максимума производной от активной составляющей проводимости и значение активной составляющей проводимости на частоте максимума производной, после чего вычисляют величину добротности в соответствии с определенным математическим выражением. Технический результат: повышение производительности контроля пьезорезонаторов и обеспечение контроля добротности пьезорезонаторов посредством устройства без элементов памяти. 2 н.п. ф-лы, 6 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля качества микромеханических элементов. Устройство измерения резонансных частот и добротности подвижных элементов микромеханических устройств включает в себя генератор, регулятор амплитуды, усилитель мощности, вибростенд, на подвижной части которого закрепляется исследуемый МЭМС, источник излучения. В устройство добавлены позиционно-чувствительный фотоприемник и узлы обработки сигналов с позиционно-чувствительного элемента и взят точечный источник излучения. Технический результат - повышение точности измерения резонансных частот и определения добротности МЭМС элементов, уменьшение времени измерения. 1 ил.
Наверх