Способ получения алкидных олигомеров и алкидный лак, содержащий алкидный олигомер

Изобретение относится к получению алкидных олигомеров для использования в производстве лакокрасочных материалов с использованием отходов полиэтилентерефталата. Предложено проведение переэтерификации (алкоголиза) растительных масел и измельченных отходов полиэтилентерефталата пентаэритритом в одну стадию при нагревании в присутствии катализатора стеарата цинка в среде инертного газа и последующей полиэтерификации продукта алкоголиза фталевым ангидридом и малеиновым ангидридом в инертной среде в присутствии ксилола. Процесс проводят до достижения кислотного числа не более 15 мг КОН/г. Получают светлый продукт с хорошими потребительскими свойствами. На основе полученного олигомера выпускают лак. 2 н.п. ф-лы, 1 табл.

 

Изобретение относится к химической промышленности, конкретно к получению алкидных олигомеров (смол) с использованием отходов полиэтилентерефталата (вторичного полиэтилентерефталата), и может найти широкое применение при получении различных лакокрасочных материалов для покрытий различного назначения.

Известен способ, по которому алкидные олигомеры получают переэтерификацией отходов лавсана (синтетического волокна из ПЭТФ) и монокарбоновой жирной кислоты или растительного масла полиатомным спиртом, при этом переэтерификацию проводят одновременно с поликонденсацией фталевым ангидридом в одну или две стадии [SU 1373710, 15.02.1988].

Однако при этом возможно получение только глифталевых смол, которые, как правило, не используются в качестве самостоятельного пленкообразующего, а применяются только в композициях совместно с нитроцеллюлозными пленкообразователями для повышения эластичности и адгезии нитроцеллюлозных покрытий.

Также известен способ, по которому переэтерификацию отходов ПЭТФ (лавсана) маслом и многоатомным спиртом проводят в присутствии ароматической монокарбоновой кислоты с последующей поликонденсацией полученного продукта с дикарбоновой кислотой или ее ангидридом. При этом отходы ПЭТФ предварительно подвергают алкоголизу кубовыми остатками системы ректификации этиленгликоля или этиленглитколем. Продукты алкоголиза имеют молекулярную массу 650-225, что соответствует гидроксильному числу 150-500 мг КОН/г [SU 929660, 23.05.1982].

Недостатком способа является необходимость проведения предварительного алкоголиза отходов ПЭТФ при высокой температуре с последующим измельчением полученного алкоголизата перед загрузкой в реактор. Кроме того, полученные по данному способу продукты имеют очень темный цвет (130-160 ед. по йодометрической шкале), что делает их совершенно непригодными для использования в производстве высококачественных эмалей светлых тонов.

В качестве катализаторов алкоголиза при синтезе алкидных олигомеров известно применение различных соединений, в том числе оксидов, гидроксидов и солей ряда металлов, которые оказывают влияние не только на скорость процесса, но и на состав образующихся продуктов [Иванов С.А. и др. "Лакокрасочные материалы и их применение". 1991, №6, С.6-11].

Известен способ переработки отходов ПЭТФ в алкидные олигомеры, по которому переэтерификацию отходов ПЭТФ и растительных масел осуществляют в одну стадию в присутствии ароматических или алициклических монокарбоновых кислот с последующей поликонденсацией полученного переэтерификата фталевым ангидридом [SU 622824].

Процесс осуществляют следующим образом:

I. В реакционный сосуд загружают растительное масло, многоатомный спирт, монокарбоновую кислоту и катализатор - оксид свинца. Смесь нагревают до 240-260°С. После этого производят загрузку отходов ПЭТФ, и реакционную массу выдерживают при данной температуре до достижения растворимости в смеси уайт-спирита с изобутанолом.

II. Полученный переэтерификат охлаждают до 200°С, после чего к нему добавляют фталевый ангидрид, и проводят поликонденсацию.

Недостатком данного способа является необходимость применения дополнительного реагента (монокарбоновой кислоты), что требует использования дополнительного оборудования для дозирования реагента и удаления воды, образующейся на первой стадии. Продукты, полученные по данному способу, более светлые (цвет 50-100 ед. по йодометрической шкале), однако и эти значения недостаточны для получения на основе синтезированных олигомеров эмалей светлых тонов. Кроме того, известно, что наличие в структуре излишнего количества ароматических и непредельных алициклических фрагментов (остатков бензойной кислоты и канифоли), увеличивая твердость получаемых покрытий, ухудшает их свето- и атмосферостойкость.

В связи с этим получаемые по данному способу пленкообразователи можно рекомендовать преимушественно для лакокрасочных материалов, используемых внутри помещений.

Наиболее близким по технической сущности к заявляемому изобретению и достижению технического результата является известный способ получения алкидных олигомеров путем алкоголиза (переэтерификации) отходов ПЭТФ и растительных масел пентаэритритом при нагревании в присутствии катализатора с последующей поликонденсацией продукта алкоголиза с фталевым ангидридом, при этом алкоголиз проводят, загружая одновременно к предварительно подогретому растительному маслу с катализатором пентаэритрит и отходы полиэтилентерефталата, при этом в качестве отходов полиэтилентерефталата используют измельченные отходы пищевой полимерной тары на основе полиэтилентерефталата с содержанием до 10% примесей полиэтилена и полипропилена, а в качестве катализатора используют кадмиевые или никелевые соли насыщенных или ненасыщенных алифатических монокарбоновых кислот с длиной цепи С6-C18 или кадмиевые, никелевые или цинковые соли ацилсалициловых кислот с длиной цепи ацильного заместителя С618 в количестве 0,1-0,5% от массы компонентов [RU 2209818, 10.08.2003].

Известный способ позволяет получать алкидные олигомеры с различным показателем цветности (10-60 ед. по йодометрической шкале), однако полученные продукты характеризуются ярко выраженной опалесценцией, усиливающейся при хранении, что приводит к несоответствию лаков на их основе требованиям технических условий по показателю "внешний вид". Кроме того, для синтеза алкидных олигомеров в известном способе предложено применение в качестве катализатора достаточно сложных и дорогостоящих соединений. Таким образом, недостатками известного способа является невозможность получения полностью кондиционных полуфабрикатных лаков, а также применение в качестве катализаторов сложных соединений, выпускающихся отечественной промышленностью в ограниченных количествах или требующих освоения их производства.

Технической задачей заявляемого изобретения является упрощение процесса, проведение процесса с использованием в качестве катализатора доступного и недорогого продукта, обеспечивающего получение алкидых олигомеров с повышенной твердостью, позволяющих в свою очередь получать алкидные лаки, соответствующие требованиям нормативной документации (в частности ТУ 6-10-612-76 на лак ПФ-060) по всем показателям.

Поставленная техническая задача достигается тем, что в способе получения алкидного олигомера путем одновременного (одностадийного) алкоголиза растительных масел и измельченных отходов полиэтилентерефталата пентаэритритом при нагревании в среде инертного газа в присутствии катализатора, последующей полиэтерификации (поликонденсации) продукта алкоголиза с фталевым ангидридом в среде инертного газа в качестве катализатора используют стеарат цинка, полиэтерификацию осуществляют в присутствии ксилола, одновременно с фталевым ангидридом на стадии полиэтерификации вводят малеиновый ангидрид и проводят процесс до достижения кислотного числа не более 15 мг КОН/г.

Стеарат цинка, предлагаемый в качестве катализатора, выпускается отечественной промышленностью в достаточном количестве, в частности Ставропольским ОАО "Люминофор" по ТУ 6-09-17-316-96.

В качестве растительного масла в способе по изобретению используют различные высыхающие и полувысыхающие масла, например льняное, подсолнечное, соевое, тунговое масла и другие.

В качестве отходов полиэтилентерефталата (ПЭТФ) в способе по изобретению используют измельченные отходы ПЭТФ в виде, например, измельченной крошки, измельченных волокон и нитей, а также измельченные отходы пищевой полимерной тары на основе ПЭТФ, например с содержанием до 10% примесей полиэтилена и полипропилена.

Сущность заявленного способа по изобретению заключается в следующем.

В реактор, снабженный холодильником, соединенным на "прямую", загружают растительное масло, включают мешалку, обогрев и пускают ток инертного газа.

По достижении температуры 180-200°С в реактор загружают катализатор стеарат цинка и продолжают подъем температуры до (255±5)°C, затем загружают измельченные отходы - вторичный ПЭТФ и небольшими порциями пентаэритрит при небольшом разрежении в реакторе. Процесс переэтерификации (алкоголиза) ведут до растворимости пробы реакционной массы в этиловом спирте в соотношении не менее 1:5 по объему при (25-27)°С. По окончании реакции переэтерификации (алкоголиза) содержимое реактора охлаждают до температуры 180-200°С и загружают фталевый и малеиновый ангидрид.

При температуре 150-160°С после загрузки компонентов реактор соединяют через конденсатор, соединенный на "прямую" с разделительным сосудом, заполненным ксилолом и водой, в конденсатор пускают воду, а в реактор - ток инертного газа. При температуре реакционной массы не выше 160°С в реактор загружают порционно ксилол, затем включают обогрев.

Полиэтерификацию проводят при плавном подъеме температуры до (235±5)°С. Реакционную массу выдерживают при данной температуре до достижения вязкости 60%-го раствора олигомера в ксилоле по В3-4 при температуре (20,0±0,5)°С 70-120 с, кислотного числа - не более 15 мг КОН/г. При достижении необходимой вязкости далее алкидный олигомер при температуре 180-190°С сливают в смеситель под слой смеси растворителей уайт-спирита и сольвента в соотношении 85:15 по массе.

Ниже представлены конкретные примеры осуществления способа по изобретению, иллюстрирующие его, не ограничивающие объема притязаний.

Пример 1. Для получения алкидного олигомера в реактор, снабженный холодильником, загружают 57,5 мас.% подсолнечного масла, включают мешалку, обогрев, пускают ток инертного газа. При достижении температуры 200°С в реактор добавляют катализатор - 0,2 мас.% стеарата цинка, поднимают температуру до (250±5)°С и загружают 8,4 мас.% измельченных отходов ПЭТФ, 13,6 мас.% пентаэритрита небольшими порциями. Осуществляют процесс алкоголиза (переэтерификации), проводя контроль процесса обычным способом, например до растворимости пробы реакционной массы в этиловом спирте в соотношении 1:5 по объему при 25-27°С. После этого реакционную массу охлаждают до 180°С и загружают 17,1 фталевого ангидрида и 0,2 малеинового ангидрида. Проводят полиэтерефикацию (поликонденсацию) продуктов алкоголиза (переэтерификации). При этом процесс проводят в токе инертного газа (например, азота), при 160°С в реактор загружают 3,0 мас.% ксилола. Полиэтерификацию (поликонденсацию) проводят при (235±5)°С до достижения кислотного числа не более 15 мг КОН/г и до нарастания вязкости полученного олигомера (в виде 60%-ного раствора в ксилоле) по вискозиметру В3-4 с диаметром сопла 4 мм при (20±0,5)°С 70-120 с.

Пример 2. Синтез осуществляют аналогично примеру 1, но в качестве растительного масла используют льняное масло в количестве 50,0 мас.%; 10,0 мас.% отходов ПЭТФ, 0,3 мас.% стеарата цинка и 14,9 мас.% пентаэритрита. Стадию алкоголиза (переэтерификации) проводят в среде инертного газа при температуре (250±5)°С. По завершении стадии алкоголиза (переэтерификации), окончание которой определяют по растворимости пробы в этиловом спирте (аналогично примеру 1), реакционную массу охлаждают до 200°С и в реактор вводят 19,5 мас.% фталевого ангидрида и 0,3 мас.% малеинового ангидрида. Процесс проводят в среде инертного газа; далее загружают ксилол в количестве 5 мас.%, после чего поднимают температуру до (235±5)°С и проводят стадию полиэтерификации (поликонденсации). Контроль реакции осуществляют по снижению кислотного числа и нарастанию вязкости продукта. Синтез алкидного олигомера считают законченным по достижению кислотного числа не более 15 мг КОН/г и вязкости 60%-ного раствора в ксилоле 70-120 с по вискозиметру В3-4.

Пример 3. Синтез осуществляют, как в примере 1, но первую стадию алкоголиза (переэтерификации) проводят с использованием в качестве растительного масла 60 мас.% подсолнечного масла, 0,2 мас.% стеарата цинка (катализатора), 6,8 мас.% отходов ПЭТФ, 12,3 масс.% пентаэритрита. Алкоголиз проводят в среде инертного газа (азота) при 260°С. Окончание стадии алкоголиза определяют по растворимости пробы в этиловом спирте.

Стадию полиэтерификации (поликонденсации) осуществляют, добавляя к продукту алкоголиза 17,5 мас.% фталевого ангидрида и 0,2 мас.% малеинового ангидрида. Процесс осуществляют в среде инертного газа и ксилола (3 мас.%) при 240°С. Окончание процесса определяют по снижению кислотного числа и нарастанию вязкости: кислотное число не более 15 мг КОН/г, вязкость 60%-ного раствора в ксилоле 70-120 с по вискозиметру В3-4.

Пример 4 (контрольный). Синтез осуществляют аналогично примеру 1, используя в качестве катализатора стадии алкоголиза (переэтерификации) 0,2 мас.% гексадеканоилсалицилата цинка (катализатор по прототипу). Количества всех остальных компонентов, а также технологические параметры синтеза аналогичны примеру 1.

Пример 5 (контрольный). Синтез осуществляют аналогично примеру 1, в качестве растительного масла используют подсолнечное масло в количестве 57,5 мас.%; 8,4 мас.% отходов ПЭТФ, 0,2 мас.% стеарата цинка и 13,6 мас.% пентаэритрита. Стадию алкоголиза (переэтерификации) проводят в среде инертного газа при температуре (250±5)°С. По завершении стадии алкоголиза (переэтерификации), окончание которой определяют по растворимости пробы в этиловом спирте (аналогично примеру 1), реакционную массу охлаждают до 200°С, и в реактор загружают только фталевый ангидрид в количестве 17,3 мас.%. Процесс проводят в среде инертного газа; далее загружают ксилол в количестве 3 мас.%, после чего поднимают температуру до (235±5)°С и проводят стадию полиэтерификации (поликонденсации). Контроль реакции осуществляют по снижению кислотного числа и нарастанию вязкости продукта. Синтез алкидного олигомера считают законченным по достижению кислотного числа не более 15 мг КОН/г и вязкости 60%-ного раствора в ксилоле 70-120 с по вискозиметру В3-4.

На основе алкидного олигомера, синтезированного по примерам, получают алкидный лак при следующем соотношении компонентов:

алкидный олигомер45-60
органический растворительостальное

В качестве органического растворителя используют ксилол, уайт-спирит, нефрас, растворитель ТС-1 или их смеси в различных соотношениях.

Качество алкидного олигомера, полученного способом по изобретению, а также свойства лака и покрытий на его основе приведены в таблице. Для определения свойств олигомера, получаемого по прототипу, синтез проводили согласно описанию патента RU 2209818.

Таблица
Наименование показателейПримеры
12345прототип
Внешний видОднородная прозрачная жидкость светло-желтого цветаОднородная прозрачная жидкость желтого цветаОднородная прозрачная жидкость желтого цветаОднородная жид-кость желтого цвета с сильной опалесценциейОднородная жидкость желтого цвета с незначительной опалесценциейОднородная жидкость желтого цвета с сильной опалесценцией
Цвет по йодометрической шкале, мг I2/см3201520202520
Кислотное число, мг КОН/г9,712,010,21514,515
Вязкость по В3-4, с110809010090100
Массовая доля нелетучих веществ олигомера, %606060606060
Массовая доля нелетучих веществ лака, %605845606060
Относительная твердость по прибору М-3, усл. ед. (отверждении при 800С в течение 1 ч)0,50,50,50,40,40,45
Эластичность покрытия, мм111111
Прочность покрытия при ударе, см505050505050

1. Способ получения алкидных олигомеров путем одновременного алкоголиза растительных масел и измельченных отходов полиэтилентерефталата (ПЭТФ) пентаэритритом при нагревании в присутствии катализатора в среде инертного газа, последующей полиэтерификацией продукта алкоголиза с фталевым ангидридом в среде инертного газа, отличающийся тем, что при температуре 180-200°С к растительному маслу добавляют катализатор - стеарат цинка, повышают температуру до (255±5)°С и загружают измельченные отходы ПЭТФ (с содержанием до 10% примесей полиэтилена и полипропилена) и пентаэритрит, по окончании реакции переэтерификации температуру понижают до 180-200°С, загружают фталевый и малеиновый ангидрид, а при достижении температуры 160°С - ксилол, поднимают температуру до (235±5)°С и проводят процесс до достижения кислотного числа не более 15 мг КОН/г при следующем соотношении компонентов, мас.%: растительное масло - 50,0-60,0; отходы ПЭТФ - 6,8-10,0; стеарат цинка - 0,2-0,3; пентаэритрит - 12,3-14,9; фталевый ангидрид - 17,1-19,5; малеиновый ангидрид - 0,2-0,3; ксилол - 3,0-5,0.

2. Алкидный лак, содержащий алкидный олигомер, полученный по п.1, и органический растворитель, выбранный из группы, состоящей из ксилола, уайт-спирита, нефраса, растворителя ТС-1 или их смесей в различных соотношениях, при следующем соотношении компонентов:

Алкидный олигомер45-60
Органический растворительОстальное



 

Похожие патенты:
Изобретение относится к композиции для герметизации пор изделий из алюминиевых и медных сплавов и может быть использовано в радиотехнической промышленности, приборостроении, авиационной промышленности.
Изобретение относится к способам стабилизации в процессе хранения лакокрасочных материалов на алкидной основе и может быть использовано в производстве алкидных эмалей различного назначения.

Изобретение относится к алкидно-эпоксидным грунтовочным композициям на основе отходов дистилляции фталевого ангидрида и эпоксидных смол и может быть использовано для нанесения антикоррозионных химически стойких покрытий на металлические изделия и конструкции различного назначения.
Изобретение относится к получению модифицированных алкидных смол широко используемых в лакокрасочной промышленности, а также к лакокрасочным материалам на основе модифицированной алкидной смолы, используемых для внутренних и наружных окрасочных работ.

Изобретение относится к составам антикоррозионных покрытий холодной сушки и может быть использовано в нефтяной, газовой, энергетической, химической и других отраслях промышленности для защиты поверхности изделий и конструкций из черных металлов.

Изобретение относится к получению лакокрасочных материалов, в частности масляно-смоляного лака, который применяют в производстве эмалей, используемых в качестве защитных, декоративных, электроизоляционных и других органических покрытий.

Изобретение относится к составам антикоррозионных покрытий холодной сушки и может быть использовано в различных отраслях промышленности. .

Изобретение относится к композиции для покрытия, содержащей полиненасыщенный полимер, тиоловое соединение и фотоинициатор. .

Изобретение относится к способу получения лакокрасочных покрытий на основе меламиноалкидных эмалей, содержащих кислотные ускорители на основе фосфорных кислот для снижения температуры их отверждения.

Изобретение относится к области термохимической переработки отходов, а точнее к способу переработки резиносодержащих и полимерсодержащих отходов путем термодеструкции в углеводородном растворителе в присутствии катализатора, проводимой, в частности параллельно с утилизацией отходов древесины.

Изобретение относится к химической переработке отходов резиносодержащих изделий и бытовых полимерных отходов. .

Изобретение относится к технологии переработки отходов резины и продуктов нефтехимии и нефтепереработки и может быть использовано для решения экологических и топливно-энергетических задач.

Изобретение относится к композиционным материалам на основе термопластов для изготовления литьем под давлением различных деталей технического назначения, в том числе деталей железнодорожной техники: изолирующих втулок и фиксаторов опор контактной сети, упругих изолирующих прокладок на деревянные и железобетонные шпалы и брусья под стрелочные переводы.
Изобретение относится к области переработки резиносодержащих отходов и может быть использовано в нефтехимической, нефтеперерабатывающей и дорожной отраслях промышленности.

Изобретение относится к области охраны окружающей среды и предназначено для решения двух важнейших экологических проблем: переработки полимерных отходов, ликвидации аварийных разливов нефти и нефтепродуктов и очистки промышленных стоков предприятий нефтеперерабатывающей промышленности.
Изобретение относится к способам изготовления пористых покрытий, используемых на различных объектах строительства, для сооружения дорожек, тротуаров, полов на детских и спортивных площадках, а также для изготовления матов широкого спектра назначения и ковриков для использования в транспортных средствах, в помещениях и перед входом в них, в бассейнах и т.п.
Изобретение относится к переработке резиносодержащих отходов, в частности к утилизации изношенных автомобильных покрышек и резинотехнических изделий путем переработки их в котельное топливо, а также жидкие и твердые отходы, которые могут быть использованы в качестве сырья для различных производств.

Изобретение относится к регенерации полимерных материалов и предназначено для использования в резинотехнической промышленности и в производстве полимерных материалов методом литья под давлением, экструзии и прессования.

Изобретение относится к химической переработке органических отходов, в частности к области утилизации отработанных резинотехнических изделий, и может быть использовано в металлургической промышленности.
Изобретение относится к способам получения алкидных смол, которые можно использовать в качестве добавок при создании лакокрасочных покрытий с водо-, масло-, бензоотталкивающими свойствами.
Наверх