Способ изготовления изделий из кварцевой керамики

Изобретение относится к керамической промышленности и может быть использовано при изготовлении фасонных изделий различного назначения с нулевой или близкой к нулю открытой пористостью, работающих в сложных климатических условиях. Техническим результатом изобретения является получение изделий с беспористым наружным слоем по всему контуру сложнопрофильного изделия, упрощение технологии изготовления изделий из кварцевой керамики с беспористым наружным слоем. Технический результат достигается тем, что в водный шликер кварцевого стекла с борсодержащей добавкой вводят порошкообразный графит в количестве 0,5-10 вес.% к твердой фазе, а обжиг изделий осуществляют в воздушной среде в два этапа, сначала при температуре 900-1100°С в течение 1-3 часов, затем при температуре 1240-1270°С в течение 1-3 часов.

 

Изобретение относится к керамической промышленности, а точнее к технологии производства изделий из кварцевой керамики, и может быть использовано при изготовлении фасонных изделий различного назначения с нулевой или близкой к нулю открытой пористостью, работающих в сложных климатических условиях.

Известен способ получения изделий из кварцевой керамики для работы в сложных климатических условиях (а.с. СССР №501052, Кл. С 04 В 35/14, 1976), согласно которому с целью получения нулевой открытой пористости в шликер кварцевого стекла вводят активатор спекания в виде борсодержащей добавки - порошка нитрида бора. Недостатком способа является то, что спекание материала в изделии до нулевой открытой пористости происходит по всему объему изделия с переводом керамической структуры материала в стеклообразную. Это ухудшает теплозащитные характеристики изделий, снижает трещиностойкость материала в изделии.

Наиболее близким техническим решением является способ получения изделий из кварцевой керамики по а.с. СССР №606843, Кл. С 04 В 35/14, Бюл. №18, 1978, по которому изделие формируют послойно - вначале формуют наружный слой из шликера кварцевого стекла с добавлением нитрида бора или нитрида кремния в количестве 0,5-2,0 вес.% толщиной 0,5-3,0 мм, затем слой из шликера кварцевого стекла без добавок и далее второй наружный слой из шликера с добавками до заданной толщины заготовки. Отформованную таким образом слоистую заготовку подвергают обжигу при 1100-1300°С в существующих промышленных печах. Добавки нитрида бора и нитрида кремния способствуют интенсивному спеканию кварцевой керамики, благодаря чему в процессе термообработки в указанных пределах температур, слои, содержащие добавки, подвергаются полному спеканию до нулевой открытой пористости. При этом пористость основного внутреннего слоя изделия находится в пределах 8 -10%. Таким образом, способ изготовления изделий включает следующие основные операции:

- приготовление водного шликера кварцевого стекла без активатора спекания и с активатором спекания;

- формование слоистой заготовки в гипсовой форме путем троекратной заливки и слива шликера;

- сушку и обжиг изделия при 1100-1300°С в существующих промышленных печах.

Недостатком способа является послойное формование керамической заготовки путем троекратной заливки и слива шликера. Смену шликеров необходимо производить быстро, до завершения усадки набранного слоя, так как в противном случае изделие расслаивается и разрушается. Способ можно реализовать на изделиях простых форм и небольших размеров с применением седиментационно устойчивых шликеров. Для крупногабаритных изделий сложной формы скорость набора заготовки зависит от высоты и профиля изделия и спрогнозировать требуемую толщину слоев невозможно. Кроме того, по прототипу в принципе невозможно получать изделия с плотными и пористыми слоями по всему замкнутому контуру изделия.

Целью настоящего изобретения является получение изделий с беспористым наружным слоем по всему контуру сложнопрофильного изделия, упрощение технологии изготовления изделий из кварцевой керамики с беспористым наружным слоем. Поставленная цель достигается тем, что способ получения изделий из кварцевой керамики, включающий приготовление водного шликера кварцевого стекла с борсодержащей добавкой, формование изделий в гипсовой форме, сушку и обжиг изделий, отличается тем, что в шликер дополнительно вводят порошкообразный графит в количестве 0,5-10 вес.% к твердой фазе, а обжиг изделий осуществляют в воздушной среде в два этапа, сначала при температуре 900-1100°С в течение 1-3 часов, затем при температуре 1240-1270°С в течение 1-3 часов.

Авторами установлено, что при введении в структуру кварцевой керамики активатора спекания и графита процесс спекания материала проходит в два этапа: первый этап - окисление и пиролиз графита, и второй этап - уплотнение и спекание частиц кварцевого стекла. Подобраны оптимальные температурные и временные интервалы для них. Оптимальной температурой окисления графита в керамической заготовке будет температура в интервале 900-1100°С, выше которого происходит спекание материала. За счет изменения времени выдержки от 1 до 3 часов при этой температуре можно регулировать глубину пиролиза графита от 2 до 10 мм.

Оптимальная температура для спекания керамики до нулевой пористости в наружном слое (слоях), где произошло удаление графита, является температура в интервале 1240-1270°С с выдержкой 1-3 часа. Для температуры 1270°С достаточно выдержки 1 час, для 1240°С - 3 часа. При этом внутренний слой имеет керамическую структуру с пористостью 8-12%.

В связи с тем что плотность графита близка к плотности кварцевого стекла (2,2 г/см3) и графитовый порошок ТУ4802-20-94 хорошо смачивается водой, получение шликера кварцевого стекла с введением до 10 вес.% графита и формование из него изделий, включая крупногабаритные, не вызывает особых трудностей. Расслоение шликера с добавкой графита при выходной плотности комбинированного шликера 1,87-1,91 г/см3 не наблюдается. Верхний предел количества графита ограничивается увеличением вязкости и плотности шликера, ухудшением свойств сырца и керамики. Нижний предел - ощутимым влиянием графита на процесс спекания кварцевой керамики и сохранением пористости и керамической структуры внутреннего слоя.

По заявленному способу можно получать изделия из шликеров с добавками окислов хрома (увеличение излучательной способности), титана (снижение коэффициента линейного термического расширения), гадолиния и церия (повышение радиационной стойкости) и др.

Примеры выполнения способа.

Пример 1. В шликер кварцевого стекла с плотностью 1,89 г/см3 ввели 0,5 вес.% порошка нитрида бора ТУ2-036-707-77 и 0,5 вес.% порошка графита ТУ4802-20-94. Смесь перемешали в фарфоровом барабане на валковой мельнице в течение 3 часов. Для улучшения процесса мешки в барабан уложили небольшое количество мелющих тел (5% от массы шликера). Полученный комбинированный шликер имел плотность 1,91 г/см3, вязкость 50 с по ВЗ-1. После процеживания через сетку с ячейкой 1,0 мм шликер использовали для литья различных фасонных изделий (плиты, трубы, тигли) с толщиной стенки 10-20 мм. Изделия подвяливали в комнатных условиях, сушили и обжигали в печи KS-800 по режиму:

- нагрев со скоростью 200-300°С в час;

- выдержка при температуре 900-1100°С в течение 1 часа;

- выдержка при температуре 1240°С в течение 3 часов;

- охлаждение вместе с печью.

Полученные изделия имели открытую пористость наружного слоя толщиной 2-3 мм близкой к нулю. Внутренний слой изделия имел керамическую структуру с открытой пористостью 8-10%.

Пример 2. В шаровой мельнице ТСА-115 мокрым помолом кварцевого стекла приготовлен шликер с плотностью 1,86 г/см3. После отделения шаров ввели 1% порошка нитрида бора, а через пять часов перемешивания ввели 10% графита. Шликер перемешали в мельнице в течение 24 часов и процедили через сетку с ячейкой 0,5 мм. Дополнительным введением воды осуществили доводку суспензии до плотности 1,87 г/см3. Из полученного шликера в гипсовых формах формовали трубчатые изделия диаметром 200 мм, высотой 800 мм с толщиной стенки 20-25 мм. После подвялки и сушки изделия обжигали в шахтной электропечи с силитовыми нагревателями в воздушной атмосфере по режиму, аналогичному режиму примера 1, но с максимальной температурой 1270°С в течение одного часа. Изделия имели наружный слой толщиной 3-5 мм с кажущейся пористостью не более 0,5%, внутренний слой темного цвета керамической структуры имел пористость 7-10%.

Пример 3. В шликер кварцевого стекла аналогично примеру 2 ввели последовательно добавки 0,5% нитрида бора, 1,0% окисла хрома ТУ и графита 5,0%. После перемешивания и стабилизации шликера в мельнице ТСА115 в течение 24 часов отливали методом водного шликерного литья в гипсовых формах теплозащитные наконечники, работающие при температуре поверхности выше 1000°С. Окись хрома вводили для повышения излучательной способности изделия.

Режим обжига аналогичен режиму обжига в примере 1, но время выдержки на первом этапе было увеличено до 3 часов, а температура второго этапа составила 1250°С. Наружный беспористый слой изделия имел толщину 8-10 мм и темно-зеленый цвет. Внутренность наконечника имела пористость 10-12% темного цвета.

Предложенный способ получения изделий из кварцевой керамики с нулевой и близкой к нулю открытой пористостью имеет следующие преимущества:

- позволяет получать изделия любой сложной формы и больших габаритов;

- обеспечивает получение плотного, беспористого слоя по всему контуру изделия;

- упрощает технологию изготовления слоистых заготовок за счет применения разовой заливки шликера в форму и применения шликера одного состава;

- расширяет ассортимент, конструктивные и эксплуатационные возможности изделий из кварцевой керамики за счет упрощения технологии получения сложнопрофильных заготовок, регулирования толщины слоев в широких пределах, возможности модифицирования материала слоев.

Источники информации.

1. Авторское свидетельство СССР №501052, Кл. С 04 В 35/14, 1976.

2. Авторское свидетельство СССР №606843, Кл. С 04 В 35/14, Бюл. №18, 1978.(прототип).

Способ получения изделий из кварцевой керамики, включающий приготовление водного шликера кварцевого стекла с борсодержащей добавкой, формование изделий в гипсовой форме, сушку и обжиг изделий, отличающийся тем, что в шликер дополнительно вводят порошкообразный графит в количестве 0,5-10 вес.% к твердой фазе, а обжиг изделий осуществляют в воздушной среде в два этапа, сначала при температуре 900-1100°С в течение 1-3 ч, затем при температуре 1240-1270°С в течение 1-3 ч.



 

Похожие патенты:

Изобретение относится к производству различных строительных изделий, материалов различного назначения включая такие в частности штучные материалы как кирпич, стеновые блоки, тротуарные изделия, фасадные и половые плитки, так и различные теплоизоляционные и конструкционно-теплоизоляционные изделия в виде плит, блоков, скорлупы, сегментов, обладающих повышенными прочностными и теплоизоляционными свойствами на базе кремнеземсодержащего связующего с использованием дешевого минерального сырья и отходов различных производств.
Изобретение относится к композиционным материалам на основе стекломатриц, армированных непрерывными углеродными наполнителями, используемым для изготовления кольцевых элементов, применяющихся в авиационной, космической технике и машиностроении.
Изобретение относится к огнеупорной промышленности, а именно к производству кварцевых керамобетонных сталеразливочных огнеупоров (стаканы, защитные трубы). .
Изобретение относится к области металлургии, а именно к способам получения литых оксидных материалов на основе оксида кремния, которые могут быть использованы для получения керамических стержней сложной конфигурации для литья лопаток газотурбинных двигателей.
Изобретение относится к авиационной и машиностроительной промышленности и может быть использовано при создании деталей из конструкционных материалов, в частности антенных обтекателей ракет, работающих при температуре 950°С и выше без изменения радиотехнических характеристик.
Изобретение относится к производству керамических изделий. .
Изобретение относится к производству строительных материалов и может быть использовано для изготовления керамических стеновых изделий. .
Изобретение относится к технологии производства изделий из кварцевой керамики различного назначения и позволяет получать крупногабаритные и сложнопрофильные изделия по прецизионной технологии с высокими физико-техническими характеристиками: чехлы термопар, тигли для плавки алюминиевых сплавов, сталеразливочные стаканы и трубы для непрерывной разливки стали.

Изобретение относится к огнеупорной промышленности. .
Изобретение относится к области авиационной и ракетной техники, преимущественно к изготовлению антенных обтекателей ракет, и может найти применение в машиностроительной и других областях промышленности при создании изделий, обладающих высокой прочностью в сочетании с радиопрозрачностью во всем диапазоне температур эксплуатации.
Изобретение относится к составам для горячего ремонта кладки промышленных печей методом керамической наплавки и может быть использовано в металлургической, коксохимической и других отраслях промышленности
Изобретение относится к технологии производства сложнопрофильных изделий из кварцевой керамики с применением методов шликерного и центробежного литья
Изобретение относится к огнеупорным материалам, применяемым в металлургии, в частности, в качестве огнеупорной смеси для засыпки выпускного канала сталеразливочного ковша
Изобретение относится к производству строительных материалов и изделий, в частности стеновым керамическим изделиям, и может быть использовано при производстве керамического кирпича и камней
Изобретение относится к технологии получения изделий из кварцевой керамики и позволяет получать крупногабаритные и сложнопрофильные изделия со стабильными физико-техническими характеристиками: чехлы термопар, тигли для плавки стоматологических сплавов
Изобретение относится к технологии электрофоретического формования керамических изделий из водных шликеров
Изобретение относится к огнеупорной промышленности, в частности к производству огнеупорных изделий для ремонта футеровки коксовых печей
Шихта // 2311391
Изобретение относится к производству керамических изделий, которые могут быть использованы для высокотемпературной изоляции промышленного оборудования, трубопроводов
Шихта // 2311392
Изобретение относится к производству керамических изделий, которые могут быть использованы для высокотемпературной изоляции промышленного оборудования, трубопроводов
Наверх