Способ поквартирного учета расхода тепловой энергии

Изобретение относится к измерительной технике и может быть использовано в теплоэнергетике в системах учета расхода тепловой энергии. Технический результат - повышение точности. Для решения данной задачи измеряют разность средних значений температур поверхности каждого отопительного прибора, установленного в помещении, и температуры воздуха в нем. При этом среднее значение температуры поверхности каждого отопительного прибора определяют экспериментально, измеряя температуры в точках, равномерно распределенных по поверхности теплообмена. Затем определяют среднее значение температур каждого отопительного прибора и среднюю температуру воздуха в помещении. 1 з.п. ф-лы.

 

Изобретение относится к теплоэнергетике, в частности к учету расхода тепловой энергии.

Известный и нашедший широкое применение на практике метод учета тепловой энергии (1, 2) основан на измерении расходов теплоносителя в прямом и обратном трубопроводах, температур и давлений теплоносителей в этих трубопроводах, где вычисляется разность тепловых потоков в прямом и обратном трубопроводах.

Основными достоинствами этого метода являются приемлемая точность учета потребления тепловой энергии и расчет потерь теплоносителя у абонента.

Недостатками метода являются сложность и высокая стоимость реализации. Метод практически не применяется при поквартирном учете тепловой энергии в многоквартирных домах, т.к. требует установки двух расходомеров и датчиков температуры и давления на каждый радиатор, которых в квартире может быть от 2-х до 4-х и более. Учитывая, что расходы теплоносителя в квартирных радиаторах малы (менее 0,1 м3/час), погрешность их измерения у применяемых расходомеров может составлять 10÷15%, что делает указанный метод практически неприемлемым по точности измерений, а также по соображениям высокой стоимости его реализации.

Учет тепловой энергии по нормам расхода тепла с одного квадратного метра, в основном применяемый для расчетов с квартиросъемщиками, очень неточен и ведет к большому завышению стоимости расчетных значений потребленной тепловой энергии и соответствующим переплатам.

Способ заключается в непрерывном измерении температур отопительных приборов (радиаторов) и температур в помещениях, их содержащих, за фиксированный интервал времени, определении разности значений температур отопительного прибора, установленного в помещении, и воздуха в нем, затем на основании полученной разности температур и известной площади поверхности теплообмена с учетом теплоотдачи вычисляют расход тепловой энергии отопительного прибора. Отличительной особенностью предлагаемого способа является то, что измеряют разность средних значений температур поверхности каждого отопительного прибора, установленного в помещении, и температуры воздуха в нем, где среднее значение температуры поверхности каждого отопительного прибора определяют экспериментально, измеряя температуры в точках, равномерно распределенных по поверхности теплообмена, затем определяют среднее значение температур каждого отопительного прибора и среднюю температуру воздуха в помещении, а количество тепловой энергии, потребляемой от каждого отопительного прибора, определяют по формуле

где Т - время; Кр - постоянный коэффициент, являющийся теплотехнической характеристикой данного радиатора, Kp=70qpi·Fi, где qpi - удельная тепловая мощность радиатора [Ккал/м2·час·°С], которая определяется конструкцией радиатора (паспортные данные); Fi - поверхность излучения радиатора [м2]; n - коэффициент, определяемый типом радиатора (n=0,25÷0,3).

Экспериментальное определение среднего значения температуры поверхности отопительного прибора производят путем нанесения координатной сетки на поверхность теплообмена, в узлах которой измеряют значения температур для дальнейшего их использования. Инструментом измерения является, например, цифровой термометр с поверхностным датчиком температуры, закрепляемым на поверхности радиатора в зоне его средней температуры, которая и находится экспериментально. Для этого с помощью указанного термометра измеряется поле температур поверхности радиатора в узлах координатной сетки (не менее чем в 25 точках) и находится значение средней температуры по формуле

Затем находится зона на поверхности радиатора с температурой и в ней закрепляется поверхностный датчик температуры.

Датчики температур и подключены к электронному блоку тепловычислителя. В электронном микропроцессорном блоке определяется разность этих температур и вычисляется количество тепловой энергии, потребленной от радиатора, в соответствии с указанной выше формулой.

Теплосчетчик вычисляет количество потребленной тепловой энергии в Гкал (ГДж) за учетный промежуток времени (сутки, месяц, отопительный сезон) и отражает промежуточный результат измерений на цифровом табло, а также заносит результаты измерений в память (архивирует). Результаты измерений в количестве тепловой энергии, потребляемой от каждого радиатора в квартире, суммируются и определяется общее количество потребленной тепловой энергии в каждой квартире за учетный период , где n - число радиаторов.

Применение предлагаемого способа позволит повысить точность измерения расхода тепла у «малого» потребителя (квартиросъемщика), исключить необоснованные переплаты за ее потребление.

Источники информации

1. Патент RU 2145063, G 01 K 17/20.

2. Патент RU 2095769, G 01 K 17/20.

1. Способ поквартирного учета расхода тепловой энергии, заключающийся в непрерывном измерении температур отопительных приборов и температур в помещениях, их содержащих, за фиксированный интервал времени, определении разности значений температур отопительного прибора, установленного в помещении, и воздуха в нем, где на основании полученной разности температур и известной площади поверхности теплообмена с учетом теплоотдачи вычисляют расход тепловой энергии отопительного прибора, отличающийся тем, что измеряют разность средних значений температур поверхности каждого отопительного прибора, установленного в помещении, и температуры воздуха в нем, где среднее значение температуры поверхности каждого отопительного прибора определяют экспериментально, измеряя температуры в точках, равномерно распределенных по поверхности теплообмена, затем определяют среднее значение температур каждого отопительного прибора и среднюю температуру воздуха в помещении, результаты измерений обрабатываются на ЭВМ, где вычисляется количество тепловой энергии, потребляемой от каждого отопительного прибора, согласно формуле

где

Т - время;

Кp - постоянный коэффициент, являющийся теплотехнической характеристикой данного радиатора, Kp=70qpi·Fi, где qpi - удельная тепловая мощность радиатора, Ккал/м2·ч·°С, которая определяется конструкцией радиатора (паспортные данные); Fi - поверхность излучения радиатора, м2; n - коэффициент, определяемый типом радиатора (n=0,25÷0,3).

2. Способ поквартирного учета расхода тепловой энергии по п.1, отличающийся тем, что экспериментальное определение среднего значения температуры поверхности отопительного прибора производят путем нанесения координатной сетки на поверхность теплообмена, в узлах которой измеряют значения температур для дальнейшего их использования.



 

Похожие патенты:

Изобретение относится к экспериментальной теплофизике и может быть использовано для определения мгновенного осредненного по поверхности значения коэффициента теплоотдачи к поверхности рабочей камеры машины объемного действия.

Изобретение относится к теплотехнике и может быть использовано для измерения зависимости градиента температур на поверхности от температуры поверхности. .

Изобретение относится к теплотехническим измерениям, позволяет определить количество тепловой энергии, расходуемой отопительным прибором, и может быть использовано для измерения количества расходуемой тепловой энергии в системах теплоснабжения.

Изобретение относится к устройствам для измерения тепловых потоков, в том числе нестационарных, в частности для измерения теплового потока от движущейся среды к поверхности твердого тела.

Изобретение относится к теплотехнике и может быть использовано для измерения зависимости градиента температур на поверхности от температуры поверхности. .

Изобретение относится к средствам получения информации о технологических процессах, играющих решающую роль во многих сферах народного хозяйства, в энергетике , криогенной технике и т.п;, а именно к способам определения теплового лотка и криогенной жидкости.

Изобретение относится к области тепловых измерений и может быть использовано при измерении коэффициентов теплоотдачи в каналах теплообменных аппаратов, в охлаждающих каналах элементов тепловых двигателей.

Изобретение относится к теплотехнике и может быть использовано для учета потребляемого тепла локальным потребителем

Изобретение относится к области строительной теплотехники и может быть использовано для измерения теплового потока, проходящего через конструкцию. Конструкция имеет толщину (D), по которой в поперечном направлении формируется разность (ΔT) температур. Согласно изобретению по меньшей мере два датчика (G1, G2) температуры устанавливают на первой поверхности (S1), причем по меньшей мере один из них, например первый датчик (G1), теплоизолирован от второго датчика (G2). В результате на температуру (T1′), воспринимаемую теплоизолированным датчиком (G1), проходящий через конструкцию (К) тепловой поток воздействует в большей степени, чем на температуру (T1″), детектируемую вторым датчиком. Определяют перепад температур (T1″ - T1′) между вторым датчиком (G2) и первым датчиком (G1), после чего на первый датчик (G1) подают энергию, нагревая первую поверхность в зоне, окружающей данный датчик и, тем самым, уменьшая данный перепад. Далее, исходя из количества приложенной энергии (EQ), определяют, в виде функции от разности (ΔТ) температур, тепловой поток (J), проходящий через конструкцию. Технический результат - повышение точности определения для конкретной конструкции коэффициента теплопередачи. 2 н. и 16 з.п. ф-лы, 4 ил.
Наверх