Сорбция хрома (vi) из водных растворов на анионите марки амп

Способ извлечения хрома (VI) из водного раствора относится к области извлечения веществ с использованием сорбентов и может быть использован в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков. Техническим результатом является нахождение оптимальных условий для быстрого и эффективного способа извлечения ионов хрома (VI) из водных растворов с повышенным содержанием хрома. Это достигается тем, что сорбцию осуществляют на гелевом анионите марки АМП, содержащем обменные группы

с предварительной кислотной, щелочной или водной обработкой анионита и сорбцию ведут при рН 0-2. 3 ил.

 

Способ извлечения хрома (VI) из водного раствора относится к области извлечения веществ сорбцией и может быть использован в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков и для переработки отходов цветных металлов, содержащих хром (VI).

Известна сорбция хрома (VI) из водных растворов с применением ионообменных смол [Спирин Э.К. и др. Общие свойства ионообменных материалов, Акмола, "Жана-Арка", 1992, с.152-154], с этой целью применяют как аниониты, так и катиониты.

Недостатком способов является то, что сорбция исследовалась без учета влияния предварительной обработки сорбента, а также отсутствуют данные о сорбции хрома (VI) на анионите марки АМП.

Наиболее близким техническим решением является способ сорбции ионов хрома (VI) на гелевом анионите марки АМП [Заявка 94029354 RU А, МПК С 02 F 1/28, опубл. 10.07.1996].

Недостатком способа является то, что не исследована сорбция хрома (VI) из водных растворов с повышенным содержанием хрома.

Задачей, на решение которой направлено заявленное изобретение, является нахождение оптимальных условий для быстрого и эффективного способа селективного извлечения ионов хрома (VI) из растворов с повышенным содержанием хрома.

Техническим результатом, который может быть достигнут при осуществлении изобретения, является эффективность процесса сорбции хрома из водного раствора.

Этот технический результат достигается тем, что в известном способе сорбции хрома (VI) из водного раствора на гелевом анионите марки АМП, содержащем обменные групы

с предварительной кислой, щелочной или водной обработкой, сорбцию осуществляют при рН 0-2.

Сущность способа поясняется чертежами, где на фиг.1-3 даны зависимости обменной емкости сорбента, в мг Cr (VI) на 1 г сорбента, от величины рН раствора, времени сорбции и способа предварительной обработки сорбента.

Примеры конкретного выполнения способа.

Сорбцию Cr (VI) осуществляли из 200 см3 исходного раствора К2Cr2О7 с концентрацией 2,56 г/дм3 по Cr, масса сорбента 2 г.

Сорбент предварительно подвергали кислой, щелочной или водной обработке (выдерживали в течение суток соответственно в 0,1 н. растворах Н2SO4 или NaOH, или в дистиллированной воде).

Концентрацию ионов хрома определяли на фотоколориметре марки КФК-3, кислотно-основные характеристики раствора контролировали рН-метром марки рН-121.

В процессе сорбции величина рН раствора изменялась, поэтому в процессе сорбции проводили коррекцию заданного значения рН при непрерывном перемешивании.

Перемешивание и поддержание заданного значения рН осуществляли до тех пор, пока в дальнейшем кислотно-основные характеристики системы изменялись незначительно. Однако для большей гарантии достижения равновесия контакт сорбента и раствора осуществляли не менее суток. Для поддержания заданного значения рН раствора в процессе сорбции в качестве нейтрализаторов использовали растворы NaOH или H2SO4. Заданное значение рН поддерживали в течение 2 часов от начала сорбции нейтрализацией раствора, в дальнейшем величина рН изменялась незначительно, поэтому коррекцию величины рН осуществляли один раз в сутки.

Сорбцию осуществляли при комнатной температуре в течение суток. Используя значения концентраций ионов хрома в водном растворе исходном и после сорбции, рассчитывали обменную емкость сорбента (ОЕ), мг/г.

Пример 1 (фиг.1).

Сорбент предварительно в течение суток выдерживали в 0, 1 н. растворе H2SO4.

На фиг.1 даны результаты сорбции из водного раствора К2Cr2O7 в интервале рН 0-9. При рН>7 сорбция осуществлялась за время менее 2 ч. При рН≤7 сорбция осуществляется за время более 2 ч. Лучшие результаты получены при следующих значениях рН:

pH42
OE, мг/г193199

Пример 2 (фиг.2).

Сорбент предварительно в течение суток выдерживали в 0,1 н. растворе NaOH.

На фиг.2 даны результаты сорбции из водного раствора К2Cr2O7 в интервале рН 0-9. При рН>4 сорбция осуществлялась за время менее 2 ч.

При рН≤4 сорбция осуществляется за время более 2 ч. Лучшие результаты получены при следующих значениях рН:

pH42
OE, мг/г227219

При рН 0 обменная емкость ОЕ=240 мг/г. Однако с течением времени (более 2 ч) за счет окислительно-восстановительной реакции между хромом (VI) и сорбентом обменная емкость сорбента снижается и через сутки составляет ОЕ=188 мг/г, при этом в растворе появляется хром (III), его концентрация 0,52 г/дм3

Пример 3 (фиг.3).

Сорбент предварительно в течение суток выдерживали в дистиллированной воде.

На фиг.3 даны результаты сорбции из водного раствора К2Cr2O7 в интервале рН 0-10. При рН>4 сорбция осуществлялась за время менее 2 часов. При рН≤4 сорбция осуществляется за время более 2 часов. Лучшие результаты получены при следующих значениях рН:

pH40-2
OE, мг/г219235-230

При рН 4 через время 2 ч обменная емкость в зависимости от исходной концентрации, Сисх, г/дм3, составила:

Cисх, г/дм31,001,461,882,56
OE, мг/г100141167209

Из полученных экспериментальных данных следует, что при комнатной температуре результаты сорбции зависят от предварительной обработки сорбента, исходной концентрации раствора, величины рН раствора в процессе сорбции и времени сорбции.

Получены близкие результаты сорбции при предварительной щелочной и водной обработках сорбента. Полимеризационные процессы, протекающие в слабокислых растворах, незначительно повышают обменную емкость гелевого сорбента, но снижают скорость сорбции, так как полимеризационные превращения осуществляются во времени.

Из экспериментальных данных следует, что в кислой области развиваются окислительно-восстановительные процессы и тем интенсивнее, чем меньше величина рН и больше время контакта раствора и ионита.

При любых способах обработки сорбента в щелочной области с течением времени происходит небольшое снижение его обменной емкости, что может быть связано с деструкцией сорбента в щелочных средах.

По сравнению с прототипом сорбция на анионите марки АМП при оптимальных условиях является быстрым и эффективным способом извлечения ионов хрома (VI) из водных растворов.

Способ сорбции хрома (VI) из водных растворов на гелевом анионите марки АМП, содержащем обменные группы

с предварительной кислотной, щелочной или водной обработкой анионита, отличающийся тем, что сорбцию осуществляют при рН 0-2.



 

Похожие патенты:
Изобретение относится к металлургии, к производству металлического хрома и его карбидов. .

Изобретение относится к области металлургии и, в частности, к применяемым в цветной металлургии гидрохимическим способам комплексной переработки многокомпонентных, полиметаллических отходов с извлечением ценных компонентов и получением различных товарных продуктов.

Изобретение относится к высокопроизводительному получению небольших по массе партий изотопнообогащенного металлического хрома восстановлением его трехвалентного оксида при нагреве в атмосфере водорода.
Изобретение относится к технологии гальванических процессов и может быть использовано в машиностроительной и радиотехнической отраслях промышленности для регенерации хромовых электролитов, загрязненных примесями ионов металлов.

Изобретение относится к технологии обогащения хромитсодержащих руд. .

Изобретение относится к способу алюминотермического получения металлического хрома, включающему стадийные загрузку и проплавление шихты, содержащей окись хрома, окислитель, известь, алюминий и выпуск продуктов плавки.

Изобретение относится к способу экстракции хрома(III) из водного раствора, включающему контакт экстрагента и раствора при pH 4-8, перемешивание смеси, отстаивание и разделение фаз.

Изобретение относится к извлечению хрома из растворов сорбцией на высокоосновных анионитах в присутствии ионов натрия в исходном растворе. .
Изобретение относится к области переработки оборотных продуктов, содержащих палладий в виде металлической, оксидной и металл-оксидной форм, и может быть использовано в производстве стабильных изотопов при переработке узлов камер улавливания магнитных сепараторов и в металлургии палладия при переработке руд и концентратов, содержащих окисленный и самородный палладий, и в технологии утилизации палладийсодержащих катализаторов, а также в аналитической и препаративной химии.

Изобретение относится к переработке руд цветных, благородных и радиоактивных металлов как с промышленным, так и с непромышленным содержанием металла. .
Изобретение относится к металлургии благородных металлов, в частности к способам их извлечения и концентрирования, и может быть использовано при переработке бедных технологических растворов и пульп, содержащих золото, серебро и металлы платиновой группы.

Изобретение относится к области технологии и химии, в частности к методам разделения и концентрирования. .

Изобретение относится к области гидрометаллургической переработки ураносодержащего сырья и может быть использовано при извлечении металлов из руд. .

Изобретение относится к совместному и селективному извлечению ионов тяжелых металлов из водных растворов глинистыми минералами ирлитом-1 и ирлитом-7 и может быть использовано в цветной, черной металлургии и для очистки промышленных сточных вод.

Изобретение относится к области ионообменной технологии извлечения урана из растворов и пульп, полученных в результате сернокислого выщелачивания урановых руд. .
Изобретение относится к гидрометаллургии редких металлов и может быть использовано для десорбции рения. .
Изобретение относится к гидрометаллургии благородных металлов, в частности к способам извлечения металлов из содержащего их материала сорбцией. .

Изобретение относится к извлечению ионов металлов из водных растворов глинистыми минералами ирлитом-1 и ирлитом-7 и может быть использовано в цветной, черной металлургии и для очистки промышленных сточных вод.
Наверх