Способ получения азотно-калийного удобрения

Изобретение относится к способам получения азотно-калийных гранулированных удобрений на основе карбамида и хлорида калия. Способ включает смешение карбамида, хлорида калия, магнийсодержащего компонента, в качестве которого используют серпентинит или сульфат магния, гранулирование полученной смеси. При смешении магнийсодержащий компонент вводят в количестве 2-15,0 мас.% от содержания карбамида, количество которого в смеси берут от 29,8 до 82,4 мас.%, при этом карбамид берут в виде раствора. Технический результат заключается в повышении физико-механических и агрохимических свойств азотно-калийного удобрения и расширении диапазона сельскохозяйственных культур для его эффективного применения. 2 н. и 1 з.п. ф-лы, 1 табл.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к способам получения азотно-калийных гранулированных удобрений на основе карбамида и хлорида калия и может быть использовано в химической промышленности и сельском хозяйстве.

Уровень техники

Известен способ получения азотно-калийного удобрения, включающий смешение хлорида калия с карбамидом в смесителе, нагревание смеси и ее гранулирование (SU 347324, С 05 D 1/02, 1972). В известном способе карбамид берут в количестве 10-30 мас.%, что в пересчете на азот составляет 4,6-13,8 мас.% N. Содержание К2О равно 42,0-54,0 мас.%.

Основным недостатком известного способа является повышенное содержание калия в полученном изобретении, что затрудняет гранулирование и снижает эксплуатационную надежность способа.

Известен также способ получения азотно-калийного удобрения, включающий смешение карбамида с хлоридом калия, нагревание смеси до плавления карбамида и гранулирование удобрения (RU 2100326, С 05 D 1/00, 1997). В известном способе карбамид берут в количестве 35-90%. Гранулы удобрения, полученные известным способом, обладают повышенной прочностью. Однако применяемый в известном способе метод гранулирования путем охлаждения нагретой смеси на охлаждаемой металлической поверхности требует дополнительной стадии измельчения образующейся плитки до гранул со средним размером 1-4 мм, что снижает надежность и, как следствие, производительность способа.

Известен способ получения азотно-калийного удобрения, включающий смешение хлорида калия с плавом карбамида и/или аммиачной селитры, гранулирование полученной смеси, причем доля карбамида и/или аммиачной селитры в готовом продукте составляет 10-50 мас.%, что в пересчете на N составляет для карбамида 4,6-23,0 мас.% (FR 1476296, С 05 D 1/02, 1966).

Гранулирование осуществляют в барабанном грануляторе-сушилке. Основной недостаток способа заключается в том, что полученное гранулированное азотно-калийное удобрение содержит недостаточное количество азота и гранулы имеют неоднородный состав по объему.

Наиболее близким по технической сущности и достигаемому результату к настоящему изобретению является способ получения азотно-калийного удобрения, включающий смешение карбамида, хлорида калия, магнийсодержащего компонента и гранулирование полученной смеси (RU 2115636, С 05 С 9/00, 20.07.1998). Известный способ характеризуется тем, что используют хлорид калия с влажностью 1-10%, а гранулирование осуществляют прессованием смеси хлорида калия с мочевиной и другими минеральными компонентами.

Основным недостатком данного известного способа получения азотно-калийного удобрения является то, что удобрение, получаемое в соответствие с известным способом, теряет азот в карбамидной составляющей. Кроме того, за счет получения гранул путем прессования они имеют низкую прочность.

Раскрытие изобретения

Задачей, на решение которой направлено настоящее изобретение, является разработка и создание способа получения азотно-калийного удобрения, имеющего улучшенные характеристики.

В результате решения данной задачи возможно получение технических результатов, заключающихся в повышении физико-механических и агрохимических свойств азотно-калийного удобрения, а именно, в снижении потерь азота в удобрении и повышении прочности гранул готового продукта.

Указанные технические результаты достигаются тем, что в способе получения азотно-калийного удобрения, включающем смешение карбамида, хлорида калия, магнийсодержащего компонента и гранулирование полученной смеси, магнийсодержащий компонент и хлорид калия смешивают с раствором карбамида с получением смеси, количество карбамида в которой составляет от 29,8 до 82,4 мас.%, а магнийсодержащий компонент вводят в количестве 2-15 мас.% от содержания карбамида, причем гранулирование смеси осуществляют в грануляторе-сушилке.

Кроме того, в качестве магнийсодержащего компонента используют серпентинит.

Кроме того, в качестве магнийсодержащего компонента используют сульфат магния.

Азотно-калийное удобрение, получаемое способом по настоящему изобретению содержит N 13,7-37,9 мас.%, К2О 3-41,7 мас.%, MgO 0,3-5,3 мас.%.

Основные отличительные признаки способа получения азотно-калийного удобрения в соответствии с настоящим изобретением заключаются в том, что магнийсодержащий компонент и хлорид калия смешивают с раствором карбамида с получением смеси, количество карбамида в которой составляет от 29,8 до 82,4 мас.%, а магнийсодержащий компонент вводят в количестве 2-15 мас.% от содержания карбамида, причем гранулирование смеси осуществляют в грануляторе-сушилке.

В результате введения магнийсодержащего компонента в сочетании с хлоридом калия именно в раствор карбамида с последующей грануляцией смеси в грануляторе-сушилке, уменьшаются потери азота, которые постоянно имеют место при использовании карбамида. Вегетационные агрохимические исследования неожиданно показали, что потери азота в карбамидной составляющей азотно-калийного удобрения снижаются до ˜2,5 раз, т.е. магнийсодержащий компонент в сочетании с хлоридом калия действует как ингибитор нитрификации. Кроме того, при введении в смесь магнийсодержащего компонента улучшаются условия грануляции азотно-калийного удобрения, повышаются физико-механические свойства готового продукта и увеличивается прочность гранул.

Дополнительные отличительные признаки предлагаемого способа состоят в том, что в качестве магнийсодержащего компонента используют серпентинит, а также сульфат магния.

Настоящее изобретение соответствует условию патентоспособности - «новизна», поскольку в уровне техники не содержится технического решения, существенные признаки которого полностью совпадают со всеми признаками, имеющимися в независимом пункте формулы изобретения.

Настоящее изобретение соответствует также условию патентоспособности - «изобретательский уровень», поскольку в уровне техники не выявлены технические решения, отличительные признаки которых совпадают с отличительными признаками настоящего изобретения и направлены на получение вышеуказанных технических результатов.

Осуществление изобретения

Сущность изобретения поясняется нижеприведенными примерами.

Пример 1 (по способу-прототипу):

1000 мас.ч. хлорида калия (KCl - 95%, NaCl - 3,2%, НО - 0,8%) с влажностью 10% смешивали с 1168,5 мас.ч. мочевины и 114,5 мас.ч. прокаленного доломита состава: 41% MgO и 59% CaO.

Полученную смесь подвергли прессованию на валковом прессе при нагрузке 3 т/пог.см, после чего размололи и классифицировали по классу 2-4 мм. Крупные фракции (более 4 мм) подвергли дополнительному размолу и классификации, а мелкие фракций (менее 2 мм) вернули в голову процесса на повторное прессование совместно с исходной тукосмесью. Объем ретура составлял 100% исходной смеси. Получили продукт K2O:N:CaO:MgO=1:1:0,1:0,1 имеющий следующий химический состав: 23,6% К2O, 23,6% N, 3,0% CaO, 2% MgO.

Динамическая прочность гранул - 80%.

Потери азота от первоначального содержания при влажности хранения удобрений 60% в течение 90 дней при температуре 30° для удобрения-аналога, имеющего состав, мас.%: N 23,6, К2О 23,6, CaO 3,0, MgO 2, составили 9,74%.

Пример 2:

В соответствии с настоящим изобретением, в смеситель подают в виде 90%-ного раствора карбамид в количестве 8,27 т/час, хлорид калия в количестве 16,23 т/час и магнийсодержащий компонент в количестве 1,12 т/час при температуре 70-80°С. Концентрация карбамида в полученной смеси-пульпе составляет 29,8 мас.%, а концентрация магнийсодержащего компонента 4,47 мас.%, что составляет 15% от содержания карбамида. В качестве магнийсодержащего компонента используют серпентинит, его формула 2SiO2·3MgO·2Н2О.

Пульпу направляют на гранулирование в барабанный гранулятор-сушилку, который имеет диаметр 4,5 м, длину 30 м. Частота вращения барабана гранулятора 4,2 об/мин. Температура в зоне грануляции составляет 100-130°С. Гранулированный продукт на выходе из барабана содержит, мас.%: N 13,7, К2О 39,4, MgO 1,92. Готовый продукт на выходе из барабана гранулятора имеет следующий гранулометрический состав: фракция 1-4 мм не менее 90%, фракция не менее 1 мм до 3%, фракция более 6 мм отсутствует. Средняя прочность гранул составляет 1920 г/гранулу. Часовая производительность по готовому продукту 25 т/час.

Потери азота от первоначального содержания при влажности хранения удобрений 60% в течение 90 дней при температуре 30°С для удобрения, имеющего состав, мас.%: N 13,7, К2O 39,4, MgO 1,92, составили 4,92%. Потери азота по сравнению с примером 1 снизились в 1,98 раза.

Пример 3:

Процесс ведут так же, как описано в примере 2, но со следующими отличиями.

В смеситель подают раствор 90%-ного карбамида в количестве 23 т/час, хлорид калия в количестве 1,25 т/час и магнийсодержащий компонент - серпентинит - в количестве 3,1 т/час при температуре 70-80°С. Концентрация карбамида в смеси составляет 82,4 мас.%, а концентрация магнийсодержащего компонента 12,36 мас.%, что составляет 15% от содержания карбамида. Концентрация магнийсодержащего компонента в пересчете на MgO составляет 5,31 мас.%.

Полученную пульпу направляют в 4-6 секционный гранулятор, разделенный перегородками, причем в каждую секцию подают воздух для создания псевдоожиженного слоя. В псевдоожиженном слое находятся зародыши, содержащие карбамид, хлорид калия и магнийсодержащий компонент. Пульпа в псевдоожиженном слое распылена в виде капелек со средним диаметром менее 140 мкм. В псевдоожиженном слое поддерживают температуру в пределах 100-100°С. Полученный гранулят непрерывно отводят из гранулятора и охлаждают в холодильнике в псевдоожиженном слое. После этого гранулы разделяют с помощью сит на фракции с гранулами нужного размера (диаметр 2-5 мм), которые отбирают в качестве целевого продукта, и гранулы большего и меньшего размера. Фракцию гранул большего размера измельчают и вместе с фракцией меньшего размера возвращают в псевдоожиженный слой в качестве зародышей.. Гранулированный продукт на выходе из гранулятора содержит, мас.%: N 37,9, К2O 3, MgO 5,31. Прочность гранул составляет 2050 г/гранулу.

Потери азота от первоначального содержания при влажности хранения удобрений 60% в течение 90 дней при температуре 30°С для удобрения, имеющего состав, мас.%: N 37,9, К2O 3, MgO 5,31, составили 3,9%. Потери азота по сравнению с примером 1 снизились в 2,5 раза.

Пример 4:

Процесс ведут так же, как описано в примере 2, но со следующими отличиями.

В смеситель подают раствор 90%-ного карбамида в количестве 22,9 т/час, 4,0 т/час хлорида калия и 0,412 т/час серпентинита. Концентрация карбамида в смеси составляет 82,4 мас.%, а концентрация магнийсодержащего компонента - серпентинита - 1,65 мас.%, что составляет 2% от содержания карбамида. Пульпу направляют на гранулирование в барабанный гранулятор с псевдоожиженным слоем, в котором сочетается процесс гранулирования в барабане и технология с использованием псевдоожиженного слоя. Барабан для гранулирования является горизонтальным барабаном цилиндрической формы, оборудованным подъемными приспособлениями. Барабан вращается вокруг своей оси, а псевдоожиженный слой образован внутри гранулятора, куда подают атмосферный воздух. Гранулированный продукт на выходе из барабана содержит, мас.%: N 37,9, К2O 9,6, MgO 0,71. Прочность гранул составляет 2100 г/гранулу.

Потери азота от первоначального содержания при влажности хранения удобрений 60% в течение 90 дней при температуре 30°С для удобрения, имеющего состав, мас.%: N 37,9, К2O 9,6, MgO 0,71, составили 5,4%. Потери азота при хранении по сравнению с примером 1 снизились в 1,8 раза.

Пример 5:

Процесс ведут так же, как описано в примере 2, но со следующими отличиями.

В смеситель подают раствор 90%-ного карбамида в количестве 8,27 т/час, хлорида калия в количестве 17,4 т/час и магнийсодержащего компонента - серпентинита в количестве 0,15 т/час. Концентрация карбамида в смеси составляет 29,8 мас.%, а концентрация магнийсодержащего компонента - серпентинита - 0,6 мас.%, что составляет 2% от содержания карбамида. Пульпу направляют на гранулирование в гранулятор со струйным псевдоожиженным слоем. Гранулятор состоит из струйных слоев и псевдоожиженного слоя на перфорированном листе, распыляющих сопел и коллекторов воздуха. Каждый струйный слой имеет одно распыляющее сопло. Рециркулирующие гранулы азотно-калийного удобрения увеличиваются в размерах при прохождении через струйные слои и псевдоожиженный слой. Пульпа распыляется в струйные слои через распыляющие сопла высокого давления. Энергичное перемешивание в струйном слое дает круглые и однородные гранулы. Воздух, вводимый для образования струй и для псевдоожижения, не только отводит теплоту затвердевания азотно-калийного удобрения, но и испаряет остаточную воду в пребывающей пульпе. Гранулированный продукт на выходе из гранулятора со струйным псевдоожиженным слоем содержит, мас.%: N 13,7, К2О 41,7, MgO 0,26. Прочность гранул составляет 2150 г/гранулу.

Потери азота от первоначального содержания при влажности хранения удобрений 60% в течение 90 дней при температуре 30°С для удобрения, имеющего состав, мас.%: N 13,7, К2O 41,7, MgO 0,26, составили 5,85%. Потери азота при хранении по сравнению с примером 1 снизились в 1,66 раза.

Пример 6:

Процесс ведут так же, как описано в примере 2, но со следующими отличиями.

В смеситель подают раствор 90%-ного карбамида в количестве 15,83 т/час, хлорида калия в количестве 9,78 т/час и магнийсодержащего компонента в количестве 1,19 т/час. Концентрация карбамида составляет 56,1 мас.%, а концентрация магнийсодержащего компонента - серпентинита - 4,77 мас.%, что составляет 8,5% от содержания карбамида в смеси. Пульпу направляют на гранулирование в гранулятор с кипящим слоем с форсунками фирмы «Стамикарбон», которые обеспечивают распыление пульпы в форме тонкой пленки. Увеличение размера гранул происходит за счет наслоений, при этом имеет место малое образование пыли при осуществлении процесса получения азотно-калийного удобрения. Гранулированный продукт на выходе из гранулятора содержит, мас.%: N 25,8, К2O 23,48, MgO 2,05. Прочность гранул составляет 2300 г/гранулу.

Потери азота от первоначального содержания при влажности хранения удобрений 60% в течение 90 дней при температуре 30°С для удобрения, имеющего состав, мас.%: N 25,8, К2O 23,48, MgO 2,05, составили 4,05%. Потери азота при хранении по сравнению с примером 1 снизились в 2,4 раза.

Пример 7:

Процесс ведут так же, как описано в примере 2, но со следующими отличиями.

В смеситель подают раствор 90%-ного карбамида в количестве 15,83 т/час, хлорида калия в количестве 9,78 т/час и магнийсодержащего компонента - сульфата магния - в количестве 1,19 т/час. Содержание карбамида составляет 56,1 мас.%, а содержание магнийсодержащего компонента составляет 4,77 мас.%, что составляет 8,5% от содержания карбамида. Пульпу направляют на гранулирование в грануляционную башню диаметром 16 м и высотой ˜90 м. Центробежный гранулятор, расположенный в верхней части башни, разбрызгивает азотно-калийное удобрение в виде капель по сечению башни. Высота падения капель составляет 70 м. В нижней части грануляционной башни установлен аппарат кипящего слоя для охлаждения гранул. Гранулированный продукт на выходе башни содержит, мас.%: N 25,8, К2O 23,48, MgO 1,52. Прочность гранул составляет 1470 г/гранулу.

Потери азота от первоначального содержания при влажности хранения удобрений 60% в течение 90 дней при температуре 30°С для удобрения, имеющего состав, мас.%: N 25,8, К2O 23,48, MgO 1,52, составили 5,8%. Потери азота при хранении по сравнению с примером 1 снизились в 1,68 раза.

Пример 8:

Процесс ведут так же, как описано в примере 2, но со следующими отличиями.

В смеситель подают раствор 90%-ного карбамида в количестве 23,16 т/час, хлорида калия в количестве 0,71 т/час и магнийсодержащего компонента в количестве 3,34 т/час. Концентрация карбамида составляет 83,4 мас.%, а концентрация магнийсодержащего компонента - серпентинита - составляет 13,34 мас.%, что составляет 16% от содержания карбамида в смеси. Пульпу направляют на гранулирование. Гранулированный продукт на выходе содержит, мас.%: N 38,4, К2O 1,7, MgO 5,73, Н2О 0,4. Прочность гранул составляет 1280 г/гранулу.

Потери азота от первоначального содержания при влажности хранения удобрений 60% в течение 90 дней при температуре 30°С для удобрения, имеющего состав, мас.%: N 38,4, К2O 1,7, MgO 5,73, составили 13,6%. Потери азота при хранении по сравнению с примером 1 увеличились в 1,4 раза.

Пример 9:

Процесс ведут так же, как описано в примере 1, но со следующими отличиями.

В смеситель подают раствор 90%-ного карбамида в количестве 8,06 т/час, хлорида калия в количестве 17,62 т/час и магнийсодержащегокомпонента - серпентинита, в количестве 0,13 т/час.Концентрация карбамида составляет 29 мас.%, а концентрация магнийсодержащего компонента составляет 0,52 мас.%, что составляет 1,8% от содержания карбамидавсмеси.Пульпунаправляютнагранулирование. Гранулированный продукт на выходе содержит, мас.%: N 13,3, K2O 42,3, MgO 0,22, Н2О 0,3. Прочность гранул составляет 1200 г/гранулу.

Потери азота от первоначального содержания при влажности хранения удобрений 60% в течение 90 дней при температуре 30°С для удобрения, имеющего состав, мас.%: N 13,3, К2O 42,3, MgO 0,22, составили 13,9%. Потери азота при хранении по сравнению с примером 1 увеличились в 1,35 раза.

Следует отметить, что при выходе за верхний предел концентрации карбамида (пример 8), который в пересчете на N составил 38,4 мас.%, а концентрация магнийсодержащего компонента - серпентинита - составила 13,34 мас.%, что соответствует 16% от содержания карбамида в смеси, получается некондиционное удобрение с повышенным содержанием карбамида и воды, снижается прочность гранул и содержание калия, повышается потеря азота от первоначального содержания при хранении.

При выходе за нижний предел концентрации карбамида (пример 9), который в пересчете на N составил 13,3 мас.%, а концентрация магнийсодержащего компонента - серпентинита - составила 0,52 мас.%, что соответствует 1,8% от содержания карбамида в смеси, также получается некондиционное удобрение с пониженным содержанием азота и магния и повышенным содержанием калия, при этом повышается потеря азота от первоначального содержания при хранении.

В таблице приведены агрохимические параметры азотно-калийного удобрения, получаемого по настоящему изобретению (примеры 2-7), по способу - ближайшему аналогу и с режимными параметрами, выходящими за пределы интервалов, приведенными в пунктах 1-5 формулы изобретения.

Агрохимические параметры азотно-калийного удобрения, полученного по способу - ближайшему аналогу, приняты за 100%.

Настоящее изобретение может быть наилучшим образом применено в сельском хозяйстве и химической промышленности при производстве азотно-калийных удобрений с улучшенными физико-механическими и агрохимическими свойствами.

Таблица
№№ примеровАгрохимические параметры азотно-калийного удобрения, получаемого в соответствии с настоящим изобретением (примеры 1-6), по способу - ближайшему аналогу и с режимными параметрами, выходящими за пределы интервалов, приведенными в пунктах 1, 5 формулы изобретения, на примере различных сельскохозяйственных культур.
Избирательное поглощение питательных веществ растениями на примере соиПоглотительная способность корневой системы на примере кукурузыСкорость передвижения поглощенных ионов до сосудистой системы на примере просаВлияние рН среды, создаваемой азотно-калийным удобрением, на примере томатовСтепень и скорость усвоения растениями воднорастворимых и обменно-поглощенных ионов, выделяемых удобрениями, на примере картофеля
2-5112-115128-131115-120117-120112-114
6120-122140-146128-130148-152120-122
7118-120138-140126-128144-148118-120
Прототип100100100То же100
8Хуже на 7%, чем в примерах 2-5Хуже на 6%, чем в примерах 2-5Хуже на 8%, чем в примерах 2-5Хуже на 7%, чем в примерах 2-5Хуже на 10%, чем в примерах 2-5
9Хуже на 9%, чем в примерах 2-5Хуже на 8%, чем в примерах 2-5Хуже на 10%, чем в примерах 2-5Хуже на 9%, чем в примерах 2-5Хуже на 12%, чем в примерах 2-5

1. Способ получения азотно-калийного удобрения, включающий смешение карбамида, хлорида калия и магнийсодержащего компонента и гранулирование полученной смеси, отличающийся тем, что в качестве магнийсодержащего компонента используют серпентинит или сульфат магния, причем карбамид применяют в виде раствора в количестве от 29,8 до 82,4 мас.%, а магнийсодержащий компонент вводят в количестве 2-15,0 мас.% от содержания карбамида, причем гранулирование смеси осуществляют в грануляторе-сушилке.

2. Азотно-калийное удобрение, приготовленное согласно способу по п.1.

3. Азотно-калийное удобрение по п.2, отличающееся тем, что содержит, мас.%: N 13,7-37,9; К2О 3-41,7; MgO 0,3-5,3.



 

Похожие патенты:
Изобретение относится к технологии получения комплексных минеральных удобрений и может быть использовано при переработке полигалитового сырья. .

Изобретение относится к известковым удобрениям, полученным из продуктов промышленной утилизации, и может быть использовано в сельском и лесном хозяйствах. .

Изобретение относится к области получения сложного гранулированного фосфорного удобрения с микро- и макроэлементами. .

Изобретение относится к технологии получения гранулированных комплексных азотно-магниевых удобрений и может использоваться на химических предприятиях, производящих комплексные гранулированные удобрения на основе карбамида (мочевины).
Изобретение относится к производству магниевых удобрений для сельского и лесного хозяйства и может быть использовано при улучшении структуры кислых подзолистых почв, обедненных магнием, преимущественно для сохранения и восстановления хвойных лесов в условиях отрицательного воздействия кислотных дождей.

Изобретение относится к получению сложных удобрений, в частности азотно-фосфорных - сульфоаммофоса. .

Изобретение относится к способам получения сложных удобрений, в частности азотно-фосфорно-калийных удобрений, содержащих азот и калий в водорастворимой и лимонно-растворимой формах.

Изобретение относится к получению сложных фосфорсодержащих минеральных удобрений на основе экстракционной фосфорной кислоты и может быть использовано для производства удобрений, содержащих два и более питательных компонентов - фосфор, калий, магний.

Изобретение относится к способам получения азотно-калийных гранулированных удобрений. .
Изобретение относится к способам производства удобрений, содержащих калий, из отходов калийного производства. .
Изобретение относится к технологии получения комплексных минеральных удобрений и может быть использовано при переработке полигалитового сырья. .

Изобретение относится к химической промышленности и может быть использовано при производстве гранулированных азотно-калийных минеральных удобрений. .
Изобретение относится к способу получения гранулированного сульфата калия, применяемого в химической промышленности для производства минеральных удобрений и в сельском хозяйстве в качестве бесхлорного калийсодержащего удобрения.
Изобретение относится к способам получения азотно-калийных удобрений на основе нитрата аммония и соли калия и может найти применение в химической промышленности для производства двойных NK-удобрений.
Изобретение относится к составам азотно-калийных удобрений, включающих нитрат аммония и калийсодержащий компонент, и способам их получения и может быть использовано в сельском хозяйстве и химической промышленности.

Изобретение относится к способу получения нитрата щелочного металла и фосфата щелочного металла в одном и том же технологическом процессе из фосфатного сырья и нитратного сырья, включающий следующие этапы: а) взаимодействие фосфатного сырья с нитратным сырьем с образованием водной нитрофосфатной реакционной смеси, с последующим необязательным отделением твердого материала, б) введение водной нитрофосфатной реакционной смеси на этап первого ионного обмена, осуществляемого при наличии насыщенной ионами щелочного металла катионообменной смолы, для обмена катионов, присутствующих в реакционной смеси, на ионы щелочного металла, присутствующие в этой смоле, с получением потока, обогащенного ионами щелочного металла, в) осуществление первой кристаллизации потока, получаемого на этапе (б), при условиях, обеспечивающих кристаллизацию нитрата щелочного металла, и отделение кристаллизованного нитрата щелочного металла от маточного раствора, г) введение маточного раствора, образующегося на этапе (в), на этап второго ионного обмена, осуществляемого при наличии насыщенной ионами щелочного металла катионообменной смолы, для обмена катионов, присутствующих в маточном растворе, на ионы щелочного металла, присутствующие в этой смоле, с получением потока, содержащего фосфат, обогащенного ионами щелочного металла, и д) осуществление второй кристаллизации потока, получаемого на этапе (г), при условиях, обеспечивающих кристаллизацию фосфата щелочного металла, и отделение кристаллизованного фосфата щелочного металла от маточного раствора.

Изобретение относится к области получения удобрений, в частности хлористого калия с характерной отличительной окраской. .
Изобретение относится к способу получения азотно-калийного удобрения. .
Изобретение относится к способу получения азотно-калийного удобрения. .
Изобретение относится к технологии получения гранулированного карбамида и может использоваться на предприятиях азотной промышленности, производящих карбамид в качестве удобрений.
Наверх