Летательный аппарат

Летательный аппарат, содержащий емкость для жидкости для тушения пожара и турбореактивные двигатели, турбокомпрессорные тракты которых включают последовательно расположенные компрессор, камеру сгорания, турбину и сопло. По меньшей мере, в одном из двигателей компрессор выполнен многокаскадным, между каскадами которого установлен газожидкостный теплообменник, связанный по жидкостному контуру с емкостью для жидкости. Жидкостный контур установленного между каскадами компрессора газожидкостного теплообменника соединен с турбокомпрессорным трактом, по меньшей мере, одного двигателя. Турбокомпрессорный тракт каждого двигателя связан с турбокомпрессорными трактами одного или двух других двигателей посредством газовоздушных теплообменников, у каждого из которых вход и выход газа соединены соответственно с выходом турбины и соплом одного из двигателей, а вход и выход воздуха - с выходом компрессора и входом в камеру сгорания другого двигателя. Изобретение позволяет улучшить летно-технические характеристики летательного аппарата за счет использования хладоресурса бортовой массы жидкости для повышения экономичности установленных на борту летательных двигателей. 6 з.п. ф-лы, 3 ил.

 

Изобретение относится к авиационной технике, в частности к летательным аппаратам, имеющим на борту емкость для жидкости, предназначенной, например, для тушения пожаров.

Известен самолет-амфибия для тушения лесных пожаров, содержащий емкости для огнегасящей жидкости (воды) на борту и оснащенный газотурбинными двигателями (патент РФ №2101216 С1, кл. В 64 D 1/16, 1998 г.). Этот самолет снабжен регуляторами, позволяющими увеличить набираемый объем воды по мере выработки топлива и за счет этого повысить эффективность тушения пожаров.

Известны также технические решения, позволяющие повысить эффективность турбореактивного двигателя и увеличить его мощность. Например, известен трехконтурный турбореактивный двигатель, все три контура которого выполнены газовоздушными, первый и второй контуры подключены каждый к своему соплу, а третий контур выполнен замкнутым и служит лишь для приближения цикла двигателя к циклу Карно. Двигатель снабжен расположенными между компрессорами первого контура охладителями, а также подогревателями, расположенными перед турбинами первого и третьего контуров, причем подогреватели, установленные в третьем контуре, связаны тепловой связью с подогревателями первого контура (патент РФ №2213876 С2, F 02 K 3/077, 2001 г.).

Недостатком указанной установки является сложность при подогреве рабочего тела в контуре замкнутого цикла.

Известен также двухконтурный турбореактивный двигатель, турбокомпрессорный тракт которого включает последовательно расположенные компрессор, камеру сгорания, турбину и сопло. В этом двигателе камера сгорания соединена с емкостью для воды. Подача воды в камеру сгорания увеличивает мощность двигателя (патент РФ №2128294 С1, F 02 К 3/04, 1999 г.).

Предусмотренные в этом двигателе устройства для конденсации и возвращения воды в емкость, расположенные в его наружном контуре, значительно усложняют конструкцию двигателя.

Наиболее близким к заявленному изобретению является летательный аппарат, содержащий размещенные на борту турбореактивные двигатели, турбокомпрессорные тракты которых включают последовательно расположенные компрессор, камеру сгорания, турбину и сопло (патент РФ №2068377 С1, МПК F 02 С 3/30, 1996 г.).

Недостатком данного решения является низкая экономичность двигателей, установленных на борту летательного аппарата.

Технический результат, достигаемый изобретением, заключается в улучшении летно-технических характеристик летательного аппарата за счет использования хладоресурса бортовой массы жидкости для повышения экономичности установленных на борту летательного аппарата двигателей.

Технический результат достигается тем, что летательный аппарат, содержащий турбореактивные двигатели, турбокомпрессорные тракты которых включают последовательно расположенные компрессор, камеру сгорания, турбину и сопло, дополнительно снабжен емкостью для жидкости для тушения пожара, причем, по меньшей мере, в одном из двигателей компрессор выполнен многокаскадным, между каскадами которого установлен газожидкостный теплообменник, связанный по жидкостному контуру с емкостью для жидкости.

Связанный, как следует из уровня техники, включает в себя соединить, скрепить части чего-либо или соединить, объединить чем-либо, соединить во что-либо или установить зависимость от чего-либо (Большой толковый словарь русского языка. Российская Академия Наук, Институт лингвистических исследований, С.-Пб, «Норинт», 2000 г., стр.1163-1164).

Жидкостный контур установленного между каскадами компрессора газожидкостного теплообменника может быть соединен с емкостью для жидкости, что повышает эффективность охлаждения воздуха.

Жидкостный контур установленного между каскадами компрессора газожидкостного теплообменника может быть соединен с жидкостным контуром жидкостно-жидкостного теплообменника, другой жидкостный контур которого соединен с емкостью для жидкости, что повышает эффективность охлаждения воздуха между каскадами компрессора и позволяет использовать в замкнутой системе охлаждения воздуха теплоноситель, отличный от жидкости в емкости.

Жидкостный контур установленного между каскадами компрессора газожидкостного теплообменника может быть соединен с турбокомпрессорным трактом, по меньшей мере, одного двигателя, что увеличивает тягу двигателя.

Турбокомпрессорный тракт каждого двигателя может быть связан с турбокомпрессорными трактами одного или двух других двигателей посредством газовоздушных теплообменников, у каждого из которых вход и выход газа соединены соответственно с выходом турбины и соплом одного из двигателей, а вход и выход воздуха - с выходом компрессора и входом в камеру сгорания другого двигателя, что повышает экономичность двигателей.

Один из двигателей может быть выполнен двухконтурным и в его наружном контуре установлен газожидкостный теплообменник, жидкостный контур которого соединен с жидкостным контуром газожидкостного теплообменника, установленного между каскадами компрессора, что повышает экономичность двигателя.

Установленный между каскадами компрессора газожидкостный теплообменник может быть размещен в двухконтурном двигателе.

Жидкостный контур газожидкостного теплообменника, установленного в наружном контуре двухконтурного двигателя, может быть соединен с турбокомпрессорным трактом этого двигателя, что увеличивает тягу двухконтурного двигателя.

По меньшей мере в одном из двигателей между каскадами турбины может быть установлен подогреватель, что повышает эффективность двигателя.

Сущность изобретения поясняется чертежами фиг.1-3, где показаны схемы выполнения устройства согласно изобретению.

По схеме фиг.1 летательный аппарат 1 содержит емкость 2 для жидкости и два двухконтурных двигателя 3 и 4, совокупность элементов, относящихся к каждому из которых, ограничена на схеме пунктирной линией. Двигатели 3 и 4 выполнены по открытому циклу и могут быть различными как по характеристикам, так и по конструктивному выполнению и размерам.

Двигатель 3 содержит последовательно расположенные в его внутреннем контуре и образующие турбокомпрессорный тракт каскады 5 и 6 компрессора, камеру сгорания 7, каскады 8 и 9 турбины и сопло 10. Между каскадами 8 и 9 турбины установлен подогреватель 11, а перед соплом 10 установлена форсажная камера 12. Наружный контур двигателя 3 содержит вентилятор 13 и сопло 14, перед которым установлена форсажная камера 15. Между каскадами 5 и 6 компрессора установлен газожидкостный теплообменник 16, жидкостный контур которого соединен с жидкостным контуром газожидкостного теплообменника 17, установленного в наружном контуре двигателя 3.

Двигатель 4 содержит последовательно расположенные в его внутреннем контуре каскады 18 и 19 компрессора, камеру сгорания 20, турбину 21, форсажную камеру 22 и сопло 23. Наружный контур двигателя 4 содержит вентилятор 24, форсажную камеру 25 и сопло 26. Между каскадами 18 и 19 компрессора установлен газожидкостный теплообменник 27, вход и выход жидкости которого соединены соответственно с выходом и входом газожидкостного теплообменника 28, установленного в наружном контуре двигателя 4.

Турбокомпрессорные тракты двигателей 3 и 4 связаны между собой посредством газовоздушного теплообменника 29, в котором вход и выход газа соединены соответственно с выходом турбины 9 и соплом 10 двигателя 3, а вход и выход воздуха - с выходом компрессора 19 и входом в камеру сгорания 20 двигателя 4.

Жидкостные контуры теплообменников 16 и 27 соединены с жидкостным контуром жидкостно-жидкостного теплообменника 30, другой контур которого соединен с емкостью 2 для жидкости.

Устройство работает следующим образом.

При полете летательного аппарата 1 (самолета) с целью доставки находящейся в емкости 2 жидкости к месту назначения, например для тушения пожара или при других чрезвычайных ситуациях, поступающий в двигатель 3 воздух распределяется между внутренним и наружным контурами. В турбокомпрессорном тракте внутреннего контура воздух сжимается в каскаде 5 компрессора, охлаждается в гозожидкостном теплообменнике 16, сжимается в каскаде 6 компрессора и поступает в камеру сгорания 7, после которой газ поступает на каскад 8 турбины, нагревается в подогревателе 11 и поступает в каскад 9 турбины. В каскадах 8 и 9 турбины происходит преобразование энергии газа в результате его расширения в механическую работу. После каскада 9 газ проходит через газовоздушный теплообменник 29, подогревается в форсажной камере 12 и через сопло 10 выбрасывается в атмосферу, создавая тягу. В наружном контуре двигателя 3 воздух из вентилятора 13 проходит через газожидкостный теплообменник 17, после чего поступает в форсажную камеру 15 и через сопло 14 выбрасывается в атмосферу, создавая тягу.

В двигателе 4 поступающий воздух также распределяется между внутренним и наружным контурами. В турбокомпрессорном тракте внутреннего контура воздух сжимается в каскаде 18 компрессора, охлаждается в газожидкостном теплообменнике 27, сжимается в каскаде 19, после чего проходит через газовоздушный теплообменник 29, сгорает в камере сгорания 20, затем газ расширяется в турбине 21, нагревается в форсажной камере 22 и через сопло 23 выбрасывается в атмосферу. В наружном контуре после вентилятора 24 воздух проходит через газожидкостный теплообменник 28, поступает в форсажную камеру 25, и газовоздушная смесь через сопло 26 выбрасывается в атмосферу.

В газовоздушном теплообменнике 29 происходит передача тепла от горячих газов двигателя 3 сжатому воздуху перед камерой сгорания 20 двигателя 4, что позволяет уменьшить расход топлива в двигателе 4, т.е. повышает его экономичность.

Газожидкостные теплообменники 16 и 17 в двигателе 3 и 27 и 28 в двигателе 4 обеспечивают промежуточное охлаждение воздуха при его сжатии компрессорами двигателей 3 и 4, что позволяет повысить эффективность двигателей за счет приближения их циклов к идеальному циклу Карно.

Подогреватель 11 между каскадами 8 и 9 турбины двигателя 3 также обеспечивает приближение к идеальному циклу.

После доставки содержащейся в емкости жидкости и сброса ее летно-технические характеристики летательного аппарата возвращаются к исходным.

По схеме фиг.2 летательный аппарат 1 содержит емкость 2 для жидкости и три турбореактивных двигателя 31, 32 и 33, совокупность элементов, относящихся к каждому из которых, ограничена на схеме пунктирной линией. Двигатель 33 выполнен двухконтурным, а двигатели 31 и 32 - одноконтурными. Суммарный расход воздуха в двигателях 31 и 32 равен расходу воздуха в турбокомпрессорном контуре двигателя 33. Турбокомпрессорные тракты двигателей 31, 32, 33 содержат каскады 34-39 компрессоров, камеры сгорания 40-42, каскады 44-46 турбин, форсажные камеры 47-50 и сопла 51-54. В двигателе 33 между каскадами 45 и 46 турбины установлен подогреватель 55. Турбокомпрессорные тракты двигателей связаны между собой посредством газовоздушного теплообменника 56. Между каскадами 34-39 компрессоров в каждом двигателе расположены газожидкостные теплообменники 56, 57, 58, связанные с емкостью 2 для жидкости. В наружном контуре двигателя 33 размещен газожидкостный теплообменник 59, связанный с теплообменниками 56, 57, 58.

Устройство работает так же, как и по схеме фиг.1.

Наружный контур двигателя 33 разделен на схеме на две части условно. Двигатель 33 расположен в фюзеляже летательного аппарата (самолета), а двигатели 31, 32 - в крыльях.

По схеме фиг.3 летательный аппарат 1 содержит емкость 2 для жидкости и два двигателя 60 и 61, совокупность элементов, относящихся к каждому из которых, ограничена на схеме пунктирной линией. Двигатель 60 выполнен двухконтурным, а двигатель 61 - одноконтурным.

Турбокомпрессорные тракты двигателей 60, 61 содержат каскады 62-65 компрессоров, камеры сгорания 67, 68, каскады 69, 70, 71 турбин, форсажные камеры 72, 73, 74 и сопла 75, 76, 77. В двигателе 60 между каскадами 69 и 70 турбины установлен подогреватель 78. Турбокомпрессорные тракты двигателей 60 и 61 связаны между собой посредством газовоздушного теплообменника 79. Между каскадами 62, 63 и 64, 65 компрессора в каждом двигателе расположены газожидкостные теплообменники 80, 81, жидкостные контуры которых соединены с емкостью 2 для жидкости. В наружном контуре двигателя 60 размещен газожидкостный теплообменник 82, жидкостный контур которого соединен с теплообменником 80. Жидкостные контуры теплообменников 81 и 82 соединены соответственно с турбокомпрессорными трактами двигателей перед форсажными камерами 72 и 74. В этой схеме жидкостная часть системы охлаждения воздуха выполнена открытой. Жидкость из теплообменников 81 и 82 поступает в турбокомпрессорные тракты двигателей перед форсажными камерами 72 и 74.

Все схемы предполагают наличие насосов для перекачки жидкости, а также запорно-регулирующей аппаратуры, в частности, для отключения емкости 2 после ее опустошения.

Схемы заявленного летательного аппарата не ограничиваются описанными и определяются конкретным назначением установки и задаваемыми параметрами.

Заявленное изобретение может найти применение при создании самолетов специального назначения.

1. Летательный аппарат, содержащий емкость для жидкости и турбореактивные двигатели, турбокомпрессорные тракты которых включают последовательно расположенные компрессор, камеру сгорания, турбину и сопло, отличающийся тем, что он дополнительно содержит емкость для жидкости для тушения пожара, причем, по меньшей мере, в одном из двигателей компрессор выполнен многокаскадным, между каскадами которого установлен газожидкостный теплообменник, связанный по жидкостному контуру с емкостью для жидкости.

2. Аппарат по п.1, отличающийся тем, что жидкостный контур установленного между каскадами компрессора газожидкостного теплообменника соединен с турбокомпрессорным трактом по меньшей мере одного двигателя.

3. Аппарат по п.1, отличающийся тем, что турбокомпрессорный тракт каждого двигателя связан с турбокомпрессорными трактами одного или двух других двигателей посредством газовоздушных теплообменников, у каждого из которых вход и выход газа соединены соответственно с выходом турбины и соплом одного из двигателей, а вход и выход воздуха - с выходом компрессора и входом в камеру сгорания другого двигателя.

4. Аппарат по п.1, отличающийся тем, что один из двигателей выполнен двухконтурным и в его наружном контуре установлен газожидкостный теплообменник, жидкостный контур которого соединен с жидкостным контуром газожидкостного теплообменника, установленного между каскадами компрессора.

5. Аппарат по п.4, отличающийся тем, что установленный между каскадами компрессора газожидкостный теплообменник размещен в двухконтурном двигателе.

6. Аппарат по п.5, отличающийся тем, что жидкостный контур газожидкостного теплообменника, установленного в наружном контуре двухконтурного двигателя, соединен с турбокомпрессорным трактом этого двигателя.

7. Аппарат по п.1, отличающийся тем, что, по меньшей мере, в одном из двигателей между каскадами турбины установлен подогреватель.



 

Похожие патенты:

Изобретение относится к авиадвигателестроению. .

Изобретение относится к авиационной технике, в частности к авиационному двигателестроению. .

Изобретение относится к авиадвигателестроению

Изобретение относится к газотурбинным двигателям и, в частности, к двигателю с изменяемым циклом для энергоснабжения сверхзвуковых самолетов в полете

Изобретение относится к авиационным турбореактивным двигателям, включая двигатели для сверхзвуковых многорежимных самолетов. В турбореактивном двигателе с внешней стороны от канала наружного контура выполнен канал третьего контура, образованный на входе в двигатель промежуточными полками входного направляющего аппарата вентилятора и внешним корпусом двигателя и далее ниже по потоку - разделительными полками рабочих и спрямляющих лопаток вентилятора совместно с внешним корпусом двигателя. Задние кромки входного направляющего аппарата вентилятора в канале третьего контура выполнены поворотными. Внешняя поверхность разделительных полок спрямляющих лопаток выполнена на большем диаметре по отношению к внешней поверхности разделительных полок рабочих лопаток с образованием уступа в проточной части канала третьего контура. Отношение радиальной величины h уступа между разделительными полками рабочей лопатки и спрямляющей лопатки вентилятора в канале третьего контура к осевому зазору δ между разделительными полками рабочих и спрямляющих лопаток вентилятора находится в пределах 0,5…1,5. Изобретение направлено на повышение надежности турбореактивного двигателя. 4 ил.

Изобретение относится к энергетике. Предлагается камера смешения форсажной камеры, которая включает внешний кольцевой корпус, кок-стекатель и оболочку, на которой расположены радиально направленные пилоны-воздуховоды, закрепленные с противоположной стороны на общем разделителе, который делит внутренний контур на центральную и вешнюю части, а также обеспечивает подачу воздуха наружного контура, через полости пилонов, непосредственно в центральную часть внутреннего контура, тем самым обеспечивая равномерное распределение кислорода по радиусу камеры смешения, однородное температурное поле на выходе из камеры смешения и эффективное охлаждение узлов форсунок и стабилизаторов форсажной камеры. Изобретение позволяет создать условия, при которых на выходе из камеры смешения были обеспечены однородное температурное поле, равномерное распределение кислорода по радиусу форсажной камеры и эффективное охлаждение узлов форсунок и стабилизаторов. 9 ил.

Трехъярусная рабочая лопатка турбовентилятора содержит последовательно расположенные от корпуса турбовентилятора к диску ротора рабочую лопатку вентилятора и рабочую лопатку турбины, соединенные между собой посредством промежуточного элемента с образованием трех проточных газовых каналов. Промежуточный элемент выполнен в виде рабочей лопатки турбодетандера с образованием плавного перехода от профиля к профилю всех трех рабочих лопаток. Проточная часть газового канала рабочей лопатки турбодетандера ограничена полками. Рабочая лопатка вентилятора соединена с рабочей лопаткой турбодетандера посредством разъемного шарнирного соединения. Достигается интенсивное охлаждение двигателя, повышение тяги двигателя, снижение массы и увеличение прочностных показателей трехъярусной рабочей лопатки турбовентилятора, а также её надежности в целом. 1 ил.

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой заключается в том, что сжатый воздух из адаптивного вентилятора разделяют на три потока. Поток первого контура подают в газогенератор, выхлопные газы из которого подают в турбину низкого давления, а от нее через смеситель и форсажную камеру в основное реактивное сопло. Поток второго контура подают через форсажную камеру в основное реактивное сопло. Поток третьего контура подают в сопло третьего контура. Регулируют работу двигателя переходом с трехконтурной схемы работы на двухконтурную схему работы и обратно, а также изменением степени двухконтурности двигателя путем переключения распределительными устройствами направления потоков сжатого воздуха и включения в работу форсажной камеры. На максимальном и переходных режимах работы с форсированием двигателя поток сжатого воздуха третьего контура подают непосредственно из канала третьего контура через форсажную камеру в основное реактивное сопло. Открытие и закрытие распределительных устройств для подключения и отключения канала третьего контура осуществляют по значениям приведенной частоты вращения ротора низкого давления. Изобретение направлено на повышение максимальной полетной тяги турбореактивного двигателя на максимальных и переходных режимах с форсированием двигателя при сохранении параметров расхода топлива. 4 ил.

Авиационная силовая установка содержит турбореактивный двухконтурный двигатель с внешним и внутренним контурами и по меньшей мере один выносной вентиляторный модуль. Выносной вентиляторный модуль имеет корпус с установленными в нем тяговым вентилятором, приводом вентилятора, размещенными на одном валу, и регулируемым реактивным соплом и дополнен внутренним контуром с суживающимся реактивным соплом. Указанный внутренний контур соединен газовым каналом с внутренним контуром турбореактивного двухконтурного двигателя и снабжен устройством подогрева газа, поступающего из внутреннего контура турбореактивного двухконтурного двигателя. Привод тягового вентилятора выполнен в виде газовой турбины, размещенной ниже устройства подогрева газа по потоку. Стенки газового канала выполнены из трех слоев, где жаростойкий внутренний слой выполнен из интерметаллида, теплоизолирующий средний слой выполнен из кварцевых и кремнеземных тканей, а внешний слой выполнен из углепластика на основе высокопрочных углеродных волокон и высокотемпературной полимерной матрицы. Изобретение обеспечивает улучшение согласования взлетного и крейсерского режимов работы и повышение топливной экономичности авиационной силовой установки. 2 з.п. ф-лы, 3 ил.
Наверх