Способ эксплуатации щелочной батареи топливных элементов проточного типа

Изобретение относится к источникам питания постоянного тока, точнее к энергоустановкам (ЭУ) на топливных элементах (ТЭ), работающим на кислороде, водороде и проточном щелочном электролите. Согласно изобретению способ эксплуатации щелочной батареи ТЭ проточного типа включает разогрев ее и ее рабочего щелочного раствора, а также последующую подачу рабочих газов. Разогрев батареи топливных элементов производят, прокачивая через нее рабочий щелочной раствор, предварительно нагретый в адиабатических условиях путем растворения в воде кристаллической щелочи или путем разбавления более концентрированного раствора щелочи водой, а подачу рабочих газов производят после их нагрева рабочим щелочным раствором. Техническим результатом изобретения является: возможность ускоренного пуска батареи ТЭ с уменьшенными энергозатратами на прогрев батареи; возможность прогрева батареи ТЭ до минимальной рабочей температуры без использования внешних источников энергии; возможность запуска щелочной батареи ТЭ проточного типа при низких температурах окружающей среды.

 

Изобретение относится к источникам питания постоянного тока, точнее к энергоустановкам (ЭУ) на топливных элементах (ТЭ), работающим на кислороде и водороде. При этом рассматриваются ТЭ проточного типа (или с "прокачкой электролита"), работающие при постоянной циркуляции щелочного раствора.

Известно, что запуск ЭУ на ТЭ проводится обычно саморазогревом: просто начинают подавать в батарею топливных элементов (БТЭ) рабочие газы и прокачивают через нее раствор щелочи. Используется также нагрев от постороннего источника электроэнергии. Такие способы, принятые за аналоги [1], занимают достаточно много времени, либо требуют значительных затрат электроэнергии от внешнего источника, при этом перед этим БТЭ должна храниться при достаточно высокой температуре окружающей среды. Запустить такую БТЭ при отрицательных температурах невозможно - в щелочном растворе начинается кристаллизация, его вязкость возрастает на два порядка и т.д. Например, 30% раствор КОН уже при температуре плюс 5°С мутнеет и становится киселеобразным.

От недостатков такого способа пуска БТЭ свободно техническое решение [2], принятое за прототип. В этом случае перед запуском ЭУ (двигатель) прогревается горячей жидкостью, циркулирующей в контуре разогрева. При этом нагрев жидкости производится с помощью газовой горелки.

Недостатками прототипа являются следующие его особенности:

1. Разогревающая жидкость не является рабочим телом ЭУ (двигателя), она - лишь промежуточный теплоноситель. Поэтому если применять такой способ запуска к БТЭ, содержащей много теплоемкого щелочного раствора, процесс передачи тепла от промежуточного теплоносителя к рабочему щелочному раствору сильно затянется.

2. Такой способ не действует в том случае, если газовая горелка не работает (например, нет газа).

Задачей предлагаемого решения является, таким образом, сокращение времени прогрева БТЭ, содержащей значительное количество теплоемкого щелочного раствора, а также обеспечение возможности пуска такой БТЭ в случае, когда внешние источники отсутствуют (например, в аварийной ситуации).

Задача решается тем, что при эксплуатации щелочной батареи топливных элементов проточного типа, включающей разогрев ее и ее рабочего щелочного раствора, а также последующую подачу рабочих газов, разогрев батареи топливных элементов производят, прокачивая через нее рабочий щелочной раствор, предварительно нагретый в адиабатических условиях, а подачу рабочих газов производят после их нагрева рабочим щелочным раствором, при этом разогрев рабочего щелочного раствора производят путем растворения в воде кристаллической щелочи либо путем разбавления водой более концентрированного раствора этой щелочи.

Суть предлагаемого способа заключается в следующем. Щелочные БТЭ проточного типа содержат достаточно много водного раствора щелочи. Например, БТЭ с сухим весом ˜60 кг требует для своей работы ˜25 л раствора. Поскольку же теплоемкость воды (˜4 кДж/кг) заметно больше теплоемкости материалов, из которых изготовлена батарея (˜1 кДж/кг), при нагревании такой БТЭ большая часть тепла расходуется на нагревание раствора. В связи с этим целесообразно нагреть раствор отдельно от батареи, а затем уже нагретым циркулирующим раствором прогреть саму батарею. Можно также этим же раствором нагреть и рабочие газы перед их подачей в ТЭ.

Кроме того, в предложении используется возможность получить горячий щелочной раствор не путем разогрева холодного, а с помощью тепла гидратации (растворения) кристаллической щелочи, то есть в процессе приготовления самого раствора. Как показала практика, при приготовлении 30% NaOH температура готового раствора повышается почти до 100°С.

Для БТЭ с упомянутыми выше весовыми характеристиками (сухой вес - 60 кг, вес щелочного раствора ˜30 кг) выделяющегося при гидратации тепла достаточно, чтобы разогреть БТЭ (с щелочью) до 50÷60°С при начальной температуре батареи 0÷20°С. Таким образом, можно разогреть до рабочей температуры даже "захоложенную" БТЭ, не используя внешних источников энергии.

Это может оказаться полезным при пуске ЭУ на щелочных ТЭ в нештатной ситуации (например, при аварийной ситуации в условиях холода).

Осуществляется предлагаемый способ следующим образом. Холодный щелочной раствор, находящийся вне БТЭ, нагревают до расчетной температуры (превышающей рабочую температуру БТЭ) и начинают прокачивать через батарею до тех пор, пока она не нагреется до минимальной рабочей температуры. После этого в БТЭ подают рабочие газы, и батарея начинает саморазогрев до своей оптимальной рабочей температуры. Чтобы не охлаждать БТЭ рабочими газами (например, при отрицательных температурах воздуха) их можно предварительно пропустить через этот же щелочной раствор и нагреть, до той же температуры, что и БТЭ (для этого можно использовать газожидкостные теплообменники, размещенные в щелочном растворе).

В некоторых ситуациях (например, когда нагреватель щелочи не работает) горячий щелочной раствор получают, растворяя в воде расчетное количество кристаллической щелочи и не допуская охлаждения полученного раствора (например, в теплоизолированной емкости), после чего все действия повторяются. Вместо кристаллической щелочи можно использовать также ее более концентрированный раствор, но разогрев будет при этом меньше.

Положительным эффектом в данном техническом решении является:

- возможность ускоренного пуска БТЭ с уменьшенными энергозатратами на прогрев батареи;

- возможность прогрева БТЭ до минимальной рабочей температуры без использования внешних источников энергии;

- возможность запуска щелочной БТЭ проточного типа при низких температурах окружающей среды.

Данные обстоятельства дают возможность использовать данное техническое решение при эксплуатации автономных ЭУ с щелочными ТЭ, в том числе при низких температурах окружающей среды.

Литература

1. Н.В.Коровин. Электрохимические генераторы, М., (стр.93), 1974 г.

2. Предпусковой нагреватель на газовом топливе, RU пат. 2138676, 1997 г.

Способ эксплуатации щелочной батареи топливных элементов проточного типа, включающий разогрев ее и ее рабочего щелочного раствора, а также последующую подачу рабочих газов, отличающийся тем, что разогрев батареи топливных элементов производят, прокачивая через нее рабочий щелочной раствор, предварительно нагретый в адиабатических условиях путем растворения в воде кристаллической щелочи или путем разбавления водой более концентрированного раствора этой щелочи, а подачу рабочих газов производят после их нагрева рабочим щелочным раствором.



 

Похожие патенты:
Изобретение относится к области катализаторов для спиртовых топливных элементов (ТЭ) и способам их изготовления. .

Изобретение относится к области источников питания постоянного тока, а именно к системам электропитания постоянного тока, работающих на водороде и кислороде. .

Изобретение относится к области источников питания постоянного тока, а именно к системам электропитания постоянного тока, работающим на водороде и кислороде со щелочными или кислыми электролитами.

Изобретение относится к области электрохимических генераторов (ЭХГ) на основе топливных элементов (ТЭ) со щелочным электролитом и может быть использовано при производстве указанных генераторов.

Изобретение относится к области электротехники, связанной с разработкой электрохимических генераторов тока, и может быть использовано при изготовлении активного катализатора щелочного топливного элемента с высокой коррозионной устойчивостью, содержащего 96,0-99,75 мас.% золота и 0,25-4,0 мас.% оксида циркония.

Изобретение относится к области электротехники, связанной с эксплуатацией топливных элементов. .

Изобретение относится к области электротехники, а именно к катализаторам топливных элементов. .

Изобретение относится к электролитической ячейке и электроду с капиллярными зазорами для электролитических реакций с выделением или поглощением газа и способу электролиза для нее.

Изобретение относится к электротехнике и может быть использовано в производстве источников энергии. .

Изобретение относится к изготовлению энергоустановок на базе топливных элементов с неразделенными газовыми пространствами. .

Изобретение относится к области электротехники, в частности к системе, вырабатывающей электрический ток, которая содержит топливный элемент, работающий при температуре около 250°С, выбранный из расплавленного карбоната или из твердого оксида.

Изобретение относится к области электротехники, в частности к особенности выполнения электрохимическиих генераторов (ЭХГ) на основе топливных элементов (ТЭ) со щелочным электролитом, и может быть использовано при производстве указанных генераторов.

Изобретение относится к области прямого преобразования химической энергии в электрическую и может быть использовано в источниках тока. .

Изобретение относится к области источников питания постоянного тока, а именно к системам электропитания постоянного тока, работающих на водороде и кислороде. .

Изобретение относится к области автономной энергетики, преимущественно к энергоустановкам с электрохимическими генераторами. .

Изобретение относится к области электрохимических генераторов (ЭХГ) на основе топливных элементов (ТЭ) со щелочным электролитом и может быть использовано при производстве указанных генераторов.

Изобретение относится к топливным элементам с твердой протонопроводящей мембраной
Наверх