Способ размагничивания электрических машин переменного тока и устройство для его осуществления

Изобретение относится к электротехнике, к маломагнитным электрическим машинам и может быть использовано на судах с немагнитным корпусом. Технический результат состоит в наиболее полном размагничивании электрической машины путем наложения дополнительного переменного магнитного поля на постоянное. Размагничивание электрической машины осуществляют после отключения ее от сети электропитания и подачи переменного напряжения сети электропитания на вход блока размагничивания, которое преобразуют с помощью трехфазного преобразователя, содержащего силовой транзисторный модуль и микропроцессор, в дополнительное переменное напряжение и последовательность двух прямоугольных импульсов напряжения определенной величины и противоположной полярности. Указанные импульсы подают на обмотку статора электрической машины и создают первым импульсом магнитное поле предварительного намагничивания до максимальной величины остаточной намагниченности. Вторым импульсом создают обратное магнитное поле размагничивания, близкое к нулевому значению остаточной намагниченности электрической машины, что соответствует состоянию ее размагниченности. 2 н.п. ф-лы, 3 ил.

 

Изобретение относится к области маломагнитных электрических машин и может быть использовано на судах с немагнитным корпусом.

Известен способ размагничивания (1) ферромагнитных тел, путем воздействия на них импульсами магнитного поля с чередующейся полярностью и с убывающей до нуля амплитудой, осуществляемый с помощью известного устройства, содержащего источник постоянного тока, регулятор тока, переключатель полярности и размагничивающую обмотку.

Известный способ имеет ограниченную область применения, так как не во всех случаях может быть использован для размагничивания электрических машин по условиям их эксплуатации, например, в приводах палубных механизмов судов с немагнитным корпусом.

Поэтому, в предлагаемом способе, при размагничивании электрических машин переменного тока обратным магнитным полем Нр размагничивания с предварительным намагничиванием до максимальной величины остаточной намагниченности магнитным полем Нн предварительного намагничивания, сначала на магнитное поле Нн предварительного намагничивания накладывается дополнительное переменное магнитное поле ΔНн, величиной, обеспечивающей получение максимальной величины Jmax остаточной намагниченности после отключения указанных магнитных полей, а затем на обратное магнитное поле Нр размагничивания накладывается дополнительное переменное магнитное поле ΔНр, величиной, обспечивающей получение магнитного состояния, близкого к нулевому значению Jост остаточной намагниченности, после отключения указанных магнитных полей.

Отличительным признаком предлагаемого способа является наложение переменного магнитного поля на постоянное, как при предварительном намагничивании до максимальной величины Jmax остаточной намагниченности ферромагнитных масс электрической машины, так и при размагничивании ее обратным магнитным полем до близкого к нулевому значению Jост остаточной намагниченности.

При наложении дополнительного переменного магнитного поля на постоянное, процесс перемагничивания конструкционной стали, из которой изготовляются конструктивные элементы электрических машин (станины, подшипниковые щиты, валы), происходит по более узкой петле гистерезиса, чем в случае перемагничивания в постоянном магнитном поле, что приближает магнитные свойства магнитно жесткой конструкционной стали с различными магнитными свойствами в разных направлениях к магнитным свойствам магнитно мягкой электротехнической стали, применяемой в магнитопроводах электрических машин (статор, ротор), у которой магнитные свойства одинаковы в разных направлениях, что и обеспечивает размагничивание электрических машин новым способом и допускает его использование в электроприводах палубных механизмов судов с немагнитным корпусом, что расширяет область применения известного способа (1).

Для размагничивания электрической машины новым способом, предлагается устройство, которое, как и наиболее близкое к нему известное устройство содержит (1) блок размагничивания, включающий последовательно соединенные: источник постоянного тока, регулятор тока, переключатель полярности и размагничивающую обмотку.

В отличие от известного, новое устройство содержит аппарат управления приводом, вход которого подключен к переменному напряжению сети электропитания, первым выходом которого переменное напряжение сети электропитания отключается от электрической машины, а вторым - подается на вход блока размагничивания, выход которого подключен ко входу обмотки статора электрической машины, при этом, блок размагничивания выполнен в виде трехфазного преобразователя, содержащего силовой транзисторный модуль и микропроцессор и обеспечивает преобразование переменного напряжения сети электропитания в дополнительные переменные напряжения, создающие переменные магитные поля ΔНн и ΔНр и последовательность двух прямоугольных импульсов напряжения прямой и обратной полярности, первый из которых создает магнитное поле Нн предварительного намагничивания, а второй - обратное магнитное поле Нр размагничивания, таким образом, что сначала на магнитное поле Нн предварительного намагничивания накладывается дополнительное переменное магнитное поле ΔНн, а затем на обратное магнитное поле Нр размагничивания накладывается дополнительное переменное магнитное поле ΔНр, что и обеспечивает размагничивание новым способом.

Предлагаемый способ иллюстрирован на фиг.1 графиком, поясняющим сущность размагничивания, и схемой устройства на фиг.2 для его осуществления, а на фиг.3 (а, б) приведены сравнительные магнитограммы электрической машины до и после ее размагничивания.

На фиг.1 приведены предельный и частные гистерезисные циклы магнитных состояний, характеризуемых намагниченностью J, создаваемой постоянным Н и переменным ΔН магнитным полем обмотки статора электрической машины, используемой в качестве размагничивающей.

Величина дополнительного переменного магнитного поля предварительного намагничивания ΔНн определяется из зависимости намагниченности от переменного магнитного поля J=f(ΔH) при наложении постоянного магнитного поля Нн из условия получения максимальной величины остаточной намагниченности Jmax после отключения указанных магнитных полей (фиг.1).

Величина дополнительного переменного магнитного поля размагничивания ΔНр определяется из зависимости намагниченности от переменного магнитного поля J=f(ΔH) при наложении постоянного обратного магнитного поля Нр из условия получения близкого к нулю значения остаточной намагниченности Jост после отключения указанных магнитных полей (фиг.1).

Индексы "Н" и "Р" обозначений на фиг.1 означают наименование операций: "намагничивание" или "размагничивание".

На фиг.2 представлена схема предлагаемого устройства для размагничивания электрических машин новым способом, где:

1 - аппарат управления приводом;

11 - первый выход аппарата управления приводом;

12 - второй выход аппарата управления приводом;

2 - блок размагничивания, представляющий собой трехфазный преобразователь, содержащий силовой транзисторный модуль и микропроцессор;

3 - электрическая машина (например, асинхронный электродвигатель);

4 - сеть электропитания.

На фиг.3 (а, б) представлены магнитограммы асинхронного электродвигателя маломагнитного исполнения мощностью 20 кВт и массой 500 кГ, полученные баллистическим методом измерений.

Устройство работает следующим образом.

Размагничивание электрической машины 3 осуществляют после отключения ее первым выходом 11 аппарата управления привода 1 от сети электропитания 4.

При этом, вторым выходом 12 аппарата управления приводом 1 подают на вход блока размагничивания 2 переменное напряжение сети электропитания, которое преобразуют с помощью трехфазного преобразователя, содержащего силовой транзисторный модуль и микропроцессор в дополнительное переменное напряжение и последовательность двух прямоугольных импульсов напряжения определенной величины и противоположной полярности, которые с выхода блока размагничивания 2 подают на обмотку статора электрической машины 3 и создают первым импульсом постоянное магнитное поле Нн предварительного намагничивания, а вторым импульсом - постоянное обратное магнитное поле Нр размагничивания. При этом, сначала на постоянное магнитное поле Нн накладывают дополнительное переменное магнитное поле ΔНн, и получают максимальную величину остаточной намагниченности электрической машины Jmax, а затем на постоянное магнитное поле Нр накладывают дополнительное переменное магнитное поле ΔНр и получают магнитное состояние, близкое к нулевому значению остаточной намагниченности Jост электрической машины, которое и соответствует ее размагниченности.

Остаточная намагниченность отключенного от сети электродвигателя до размагничивания (фиг.3а) и после размагничивания (фиг.3б) оценивается по площади магнитограмм, показывающих изменение магнитного потока Ф при перемещении электродвигателя за время Т через измерительный контур.

Источники информации:

1. А. св. СССР №1007137 A, H 01 F 13/00, 23.03.1983.

1. Способ размагничивания электрических машин переменного тока обратным магнитным полем Нр размагничивания с предварительным намагничиванием до максимальной величины остаточной намагниченности магнитным полем Нн предварительного намагничивания, отличающийся тем, что сначала на магнитное поле Нн предварительного намагничивания накладывается дополнительное переменное магнитное поле ΔНн величиной, обеспечивающей получение максимальной величины Jmax остаточной намагниченности после отключения указанных магнитных полей, а затем на обратное магнитное поле Нр размагничивания накладывается дополнительное переменное магнитное поле ΔНр величиной, обеспечивающей получение магнитного состояния, близкого к нулевому значению Jост остаточной намагниченности после отключения указанных магнитных полей.

2. Устройство для размагничивания электрических машин переменного тока, содержащее аппарат управления приводом, вход которого подключен к переменному напряжению сети электропитания, первым выходом которого переменное напряжение сети электропитания отключается от электрической машины, а вторым - подается на вход блока размагничивания, выход которого подключен ко входу обмотки статора электрической машины, при этом блок размагничивания выполнен в виде трехфазного преобразователя содержащего силовой транзисторный модуль и микропроцессор, и обеспечивает преобразование переменного напряжения сети электропитания в дополнительные переменные напряжения, создающие переменные магнитные поля ΔНн и ΔНр, и последовательность двух прямоугольных импульсов напряжения прямой и обратной полярности, первый из которых создает магнитное поле Нн предварительного намагничивания, а второй - обратное магнитное поле Нр размагничивания таким образом, что сначала на магнитное поле Нн предварительного намагничивания накладывается дополнительное переменное магнитное поле ΔНн, а затем на обратное магнитное поле Нр размагничивания накладывается дополнительное переменное магнитное поле ΔНр.



 

Похожие патенты:

Изобретение относится к технике неразрушающего контроля труб. .

Изобретение относится к перемагничиванию магнитного слоя с плоскостной намагниченностью. .

Изобретение относится к электротехнике, к трехфазным устройствам вторичного электропитания электротехнической и электронной аппаратуры. .

Изобретение относится к размагничиванию ферромагнитных материалов и изделий, например, после процесса ультразвукового контроля электромагнитоакустическим методом, при проведении которого изделие намагничивается.

Изобретение относится к электротехнике и может быть использовано не только в маломощных устройствах импульсной техники и цепях управления, но и в силовых цепях систем автоматики для обеспечения надежного срабатывания электромагнитных элементов при ступенчатом регулировании электрической энергии, подводимой к нагрузке, а также в устройствах преобразовательной техники, феррорезонансных цепях, стабилизаторах.

Изобретение относится к электротехнике, к устройствам для намагничивания многополюсных магнитов и роторов электрических машин с постоянными магнитами. .

Изобретение относится к способам намагничивания многополюсных магнитов и магнитных систем. .

Изобретение относится к области электротехники, а именно к устройствам для размагничивания бурового инструмента. .

Изобретение относится к области электротехники и может быть использовано при выполнении специальных схем реверсного намагничивания постоянных магнитов. .

Изобретение относится к технике размагничивания плавучих объектов. .

Изобретение относится к электротехнике и может быть использовано в устройствах для намагничивания полимерных композиционных материалов

Изобретение относится к области электротехники и может быть использовано при размагничивании труб, стыков труб промысловых и магистральных газопроводов всех категорий и других намагниченных изделий

Изобретение относится к электротехнике и может быть использовано для размагничивания длинномерных ферромагнитных изделий, например трубопроводов, проложенных в условиях сложного рельефа или под водой

Изобретение относится к электротехнике и может быть использовано в интегральных СВЧ устройствах, содержащих ферритовые элементы

Изобретение относится к электротехнике и может быть использовано для изготовления постоянных магнитов в виде ферромагнитных тороидов с большой коэрцитивной силой, векторы намагничивания которых являются косокруговыми, для магнитных амортизаторов вместо поршневых амортизаторов колебательных движений на основе двух совмещенных одноименными магнитными полюсами тороидов с косокруговой намагниченностью, вращение одного из которых относительно другого в одном направлении осуществляется легко, а в противоположном - с усилиями

Изобретение относится к электротехнике и может быть использовано для изготовления ферритовых тороидов с большой коэрцитивной силой - постоянных магнитов, векторы намагничивания которых являются косокруговыми, то есть когда из любой i-ой точки на торцевой поверхности тороида можно провести вектор, лежащий в плоскости уi zi под некоторым углом относительно оси zi, где ось уi является касательной к окружности с центром в начале координатной системы xi уi zi, проходящей через данную точку i на данной окружности

Изобретение относится к технике размагничивания труб, стыков труб промысловых и магистральных газопроводов всех категорий

Изобретение относится к физике магнетизма и может быть использовано при намагничивании стержневых постоянных магнитов, выполненных из магнитожестких ферромагнетиков, например, из материала SmCo3
Наверх