Способ изменения цвета алмаза при высокой температуре и высоком давлении

Изобретение касается обработки природного алмаза для изменения его цвета. Сущность изобретения: способ включает следующие стадии: (i) создание реакционной массы путем обеспечения наличия алмаза в передающей давление среде, которая полностью окружает алмаз; и (ii) воздействие на реакционную массу высокой температуры и давления в течение подходящего периода времени, при этом алмаз представляет собой коричневый алмаз типа IIa и его цвет изменяют с коричневого на розовый путем воздействия на реакционную массу температуры в интервале от 1900°С до 2300°С при давлении от 6,9 ГПа до 8,5 ГПа. Изобретение позволяет получить или усилить розовый цвет алмаза, не вызывая повреждений кристалла алмаза. 29 з.п. ф-лы, 4 ил.

 

Предпосылки создания изобретения

Данное изобретение относится к способу изменения цвета алмаза.

Алмазы, как правило, подразделяют на четыре основных типа: Ia, Ib, IIa и IIb. Эти типы обычно различаются по инфракрасному и ультрафиолетовому спектрам. Алмазы типа Ia и Ib содержат азот в комбинации различных форм. Алмаз типа Ib содержит одиночные замещающие атомы азота или С-центры. Алмаз типа Ia содержит комбинацию различных структур из атомов азота. Алмазы типа IIa имеют содержание азота менее нескольких частей на миллион и могут быть охарактеризованы как алмазы, которые не демонстрируют, по существу, никакого поглощения в диапазоне 1332-400 см-1 при облучении их инфракрасным излучением. Алмаз типа IIa может иметь коричневый цвет, обусловленный, как полагают, структурной деформацией внутри кристаллической решетки алмаза.

В патенте США 4124690 описан способ преобразования азота типа Ib в азот типа Ia в алмазе типа Ib посредством высокотемпературного отжига под давлением, которое предотвращает графитизацию. Результатом этой обработки является уменьшение желтого цвета алмаза типа Ib.

Сущность изобретения

В соответствии с настоящим изобретением, предложен способ изменения цвета алмаза, включающий в себя стадии:

(i) создания реакционной массы путем обеспечения наличия алмаза в передающей давление среде, которая полностью окружает алмаз; и

(ii) воздействия на реакционную массу высоких температуры и давления в течение подходящего периода времени;

отличающийся тем, что алмаз представляет собой коричневый алмаз типа IIa, и его цвет изменяют с коричневого на розовый путем воздействия на реакционную массу температуры в интервале от 1900°С до 2300°С при давлении от 6,9 ГПа до 8,5 ГПа.

Описание вариантов осуществления

В соответствии с настоящим изобретением, коричневый кристалл алмаза типа IIa, который, как правило, представляет собой природный алмаз, подвергают отжигу под давлением, которое предотвращает существенную графитизацию, чтобы модифицировать структурную деформацию, которая вызывает окрашивание в коричневый цвет, и тем самым уменьшить коричневый цвет и получить или усилить розовый цвет алмаза. Получают розовый алмаз.

Розовые природные алмазы редки. Таким образом, в настоящем изобретении предложен способ получения или усиления розового цвета природного алмаза типа IIa, не вызывая при этом повреждений кристалла алмаза.

Типичный спектр поглощения алмаза типа IIa в инфракрасной области показан на фиг.1. Однако не все алмазы типа IIa пригодны для изменения цвета за счет обработки при высокой температуре и высоком давлении согласно настоящему изобретению. Алмазы должны иметь коричневый цвет, который может варьироваться от темно- до светло-коричневого, включая, например, розовато-коричневый. Те алмазы типа IIa, которые наиболее подходят для настоящего изобретения, имеют концентрацию азота менее 2 частей на миллион, предпочтительно менее 0,2 части на миллион, обладают цветом от коричневого до розовато-коричневого и имеют типичный спектр поглощения в ультрафиолетовой и видимой области, показанный на фиг.2 в виде линии (а), которая показывает монотонно увеличивающееся поглощение или монотонно увеличивающееся поглощение с широкими полосами с центрами на длинах волн приблизительно 390 и 550 нм, как показано на фиг.2 в виде линии (b).

Коричневый алмаз превращают в розовый алмаз путем использования температуры отжига в интервале от приблизительно 1900°С до приблизительно 2300°С, а предпочтительно от 2100°С до 2300°С, под давлением в интервале от 6,9 ГПа до 8,5 ГПа, а предпочтительно приблизительно от 7,4 ГПа до 8,5 ГПа, в течение периода времени, обычно находящегося в интервале от 10 минут до 10 часов, а предпочтительно от 20 минут до 4 часов. Как правило, чем выше температура отжига, тем короче время отжига. Ниже приведены примеры особо подходящих условий отжига в рамках указанных интервалов значений давления:

2200-2300°С в течение 1 часа;

2300°С в течение периода, составляющего менее 4 часов и предпочтительно равного 1 часу;

2100°С в течение 1 часа.

Изменение цвета кристалла алмаза типа IIa может быть количественно оценено за счет изменений в спектре поглощения кристалла, полученного до и после отжига. Спектры поглощения кристалла получают при комнатной температуре с помощью спектрометра обычным образом, что позволяет получить спектр поглощения кристалла в ультрафиолетовой и видимой области. После отжига кристалла спектры снова получают при комнатной температуре.

Обработка таких алмазов в соответствии со способом по данному изобретению приводит к уменьшению интенсивности монотонно увеличивающегося поглощения и образованию или усилению интенсивности широких полос поглощения на длинах волн 390 и 550 нм; это приводит к получению более усиленного (насыщенного) розового цвета.

В способе согласно данному изобретению реакционную массу создают путем обеспечения наличия алмаза в передающей давление среде, которая полностью окружает алмаз. Предпочтительно реакционную массу создают путем уплотнения передающей давление среды вокруг алмаза перед помещением алмаза в реакционную зону установки для обработки при высокой температуре и высоком давлении и перед воздействием на реакционную массу условий стадии (ii). Передающая давление среда представляет собой однородную (гомогенную) среду, которая полностью окружает алмаз или каждый из алмазов и которую прикладывают по всей поверхности алмаза или каждого из алмазов. Передающая давление среда предпочтительно представляет собой однородную передающую давление среду, которая обеспечивает равномерное распространение давления, которое прикладывают по всей поверхности обрабатываемого алмаза. Примерами пригодных сред являются те, которые имеют низкое сопротивление сдвигу, такие как соли металлов, например галогенидные соли металлов. Передающая давление среда может представлять собой соль щелочного металла или соль благородного металла. Примерами пригодных галогенидных солей металлов являются бромид калия, хлорид натрия, хлорид калия, хлорид цезия, бромид цезия, хлорид меди и бромид меди.

Было установлено, что такие среды обеспечивают желательное равномерное распространение давления, что гарантирует то, что любая графитизация, которая может происходить на поверхности алмаза, будет оставаться минимальной. Особое преимущество использования галогенидной соли металла в качестве передающей давление среды заключается в том, что алмазы могут быть легко извлечены после обработки путем растворения среды в горячей воде.

Способ по изобретению может быть использован для обработки единичного алмаза или множества дискретных (разрозненных) алмазов. Если обрабатывают множество разрозненных алмазов одновременно, каждый алмаз должен быть отделен от соседних с ним алмазов передающей давление средой. Максимальный объем алмаза, который может быть подвергнут обработке, ограничен только емкостью используемой установки для обработки при высоком давлении и высокой температуре.

Для реализации способа по изобретению можно использовать обычную установку для обработки при высокой температуре и высоком давлении. В патентной литературе раскрыты различные конструкции реакционных сосудов, которые обеспечивают косвенный или прямой нагрев реакционной массы, и они пригодны для осуществления процесса отжига по настоящему изобретению. Эти реакционные сосуды обычно состоят из множества подогнанных к друг другу цилиндрических элементов и концевых заглушек или дисков для удерживания реакционной массы в самом центральном цилиндре. В реакционном сосуде с косвенным нагревом один из цилиндрических элементов выполнен из графита, который нагревают путем пропускания электрического тока через него и который тем самым нагревает реакционную массу. В реакционном сосуде с прямым нагревом реакционная масса является электропроводящей, в результате чего устраняется необходимость использования цилиндра из электропроводящего графита, и электрический ток пропускают непосредственно через реакционную массу для ее нагрева.

Изобретение проиллюстрировано с помощью следующего примера.

Пример 1

Был использован природный коричневый алмаз типа IIa со спектром поглощения в ультрафиолетовой и видимой области перед обработкой, показанным на фиг.3 в виде линии (а). Множество таких алмазов было помещено в передающую давление среду в реакционном сосуде такого типа, как проиллюстрированный на фиг.4. Как показано на этой фигуре, кристаллы 10 алмазов помещают в передающую давление среду 12 таким образом, чтобы кристаллы были разрозненными (дискретными) и были отделены друг от друга в передающей давление среде. Алмазы предпочтительно равномерно распределены в среде. Передающая давление среда предпочтительно представляет собой среду с низким сопротивлением сдвигу описанного выше типа. Содержащую алмазы среду 12 помещают в контейнер 14, изготовленный из графита, пирофиллита, оксида магния или оксида циркония и полностью окруженный взаимоподогнанными металлическими колпаками 16, 18, которые образуют металлический корпус вокруг контейнера 14. Металл может представлять собой молибден, тантал или сталь. Корпус может быть прижат к контейнеру для устранения воздушных полостей. Загруженный контейнер в корпусе затем помещают в реакционную зону обычной установки для обработки при высокой температуре и высоком давлении. Содержимое капсулы было подвергнуто воздействию температуры 2250°С и давления 7,8 ГПа, при этом данные условия поддерживали в течение периода времени, составляющего 4 часа. Капсулу извлекали из установки и давали возможность охладиться. Корпус и графитовый контейнер удаляли, и алмазы извлекали из среды. Спектр поглощения алмаза в ультрафиолетовой и видимой области после обработки показан на фиг.3 в виде линии (b). Спектр показывает наличие широких полос на длине волны 390 и 550 нм, которые приводят к окрашиванию в розовый цвет, которое и было отмечено.

1. Способ изменения цвета алмаза, включающий в себя стадии

(i) создания реакционной массы путем обеспечения наличия алмаза в передающей давление среде, которая полностью окружает алмаз; и

(ii) воздействия на реакционную массу высоких температуры и давления в течение подходящего периода времени;

отличающийся тем, что алмаз представляет собой коричневый алмаз типа IIa и его цвет изменяют с коричневого на розовый путем воздействия на реакционную массу температуры в интервале от 1900 до 2300°С при давлении от 6,9 до 8,5 ГПа.

2. Способ по п.1, отличающийся тем, что алмаз представляет собой природный алмаз.

3. Способ по п.1 или 2, отличающийся тем, что алмаз имеет концентрацию азота менее 2 частей на миллион, обладает цветом от коричневого до розовато-коричневого и имеет спектр поглощения в ультрафиолетовой и видимой области, который демонстрирует монотонно увеличивающееся поглощение или монотонно увеличивающееся поглощение с широкими полосами с центрами на длинах волн приблизительно 390 и 550 нм.

4. Способ по п.3, отличающийся тем, что концентрация азота составляет менее 0,2 части на миллион.

5. Способ по любому из предшествующих пунктов, отличающийся тем, что алмаз после воздействия стадии (ii) характеризуется уменьшением интенсивности монотонно увеличивающегося поглощения и образованием или усилением интенсивности широкой полосы поглощения на длинах волн 390 и 550 нм.

6. Способ по любому из предшествующих пунктов, отличающийся тем, что температура на стадии (ii) находится в интервале от 2100 до 2300°С.

7. Способ по любому из предшествующих пунктов, отличающийся тем, что давление на стадии (ii) находится в интервале от 7,4 до 8,5 ГПа.

8. Способ по любому из предшествующих пунктов, отличающийся тем, что период, в течение которого алмаз подвергают воздействию условий стадии (ii), составляет от 10 мин до 10 ч.

9. Способ по любому из пп.1-7, отличающийся тем, что период, в течение которого алмаз подвергают воздействию условий стадии (ii), составляет от 20 мин до 4 ч.

10. Способ по любому из предшествующих пунктов, отличающийся тем, что множество алмазов помещают в передающую давление среду, при этом каждый алмаз отделен от соседнего с ним алмаза передающей давление средой.

11. Способ по любому из предшествующих пунктов, отличающийся тем, что передающая давление среда представляет собой однородную среду, которая полностью окружает алмаз или каждый из алмазов и которую прикладывают по всей поверхности алмаза.

12. Способ по любому из предшествующих пунктов, отличающийся тем, что реакционную массу создают путем уплотнения передающей давление среды вокруг алмаза перед помещением алмаза в реакционную зону установки для обработки при высокой температуре и высоком давлении и воздействием на реакционную массу условий стадии (ii).

13. Способ по любому из предшествующих пунктов, отличающийся тем, что передающая давление среда имеет малое сопротивление сдвигу.

14. Способ по любому из предшествующих пунктов, отличающийся тем, что передающая давление среда является растворимой в воде.

15. Способ по любому из предшествующих пунктов, отличающийся тем, что передающая давление среда представляет собой соль металла.

16. Способ по п.15, отличающийся тем, что передающая давление среда представляет собой галогенидную соль металла.

17. Способ по п.16, отличающийся тем, что галогенид представляет собой хлорид или бромид.

18. Способ по п.15 или 16, отличающийся тем, что передающая давление среда представляет собой соль щелочного металла.

19. Способ по п.13 или 14, отличающийся тем, что передающая давление среда представляет собой соль благородного металла.

20. Способ по п.13 или 14, отличающийся тем, что передающая давление среда представляет собой соль калия.

21. Способ по п.13 или 14, отличающийся тем, что передающая давление среда представляет собой соль натрия.

22. Способ по п.13 или 14, отличающийся тем, что передающая давление среда представляет собой соль цезия.

23. Способ по п.13 или 14, отличающийся тем, что передающая давление среда представляет собой соль меди.

24. Способ по любому из пп.1-12, отличающийся тем, что передающая давление среда представляет собой бромид калия.

25. Способ по любому из пп.1-12, отличающийся тем, что передающая давление среда представляет собой хлорид натрия.

26. Способ по любому из пп.1-12, отличающийся тем, что передающая давление среда представляет собой хлорид калия.

27. Способ по любому из пп.1-12, отличающийся тем, что передающая давление среда представляет собой хлорид цезия.

28. Способ по любому из пп.1-12, отличающийся тем, что передающая давление среда представляет собой бромид цезия.

29. Способ по любому из пп.1-12, отличающийся тем, что передающая давление среда представляет собой хлорид меди.

30. Способ по любому из пп.1-12, отличающийся тем, что передающая давление среда представляет собой бромид меди.



 

Похожие патенты:

Изобретение относится к области обработки драгоценных камней, в частности алмазов, и может найти применение в ювелирной промышленности. .

Изобретение относится к области новой технологии создания алмазов и может быть использовано в микро- и наноэлектронике при создании новых сверхпрочных конструкционных материалов, широко применяемых в различных отраслях машиностроения, в производстве полупроводниковых светодиодов на алмазной основе, а также при создании ювелирных изделий.

Изобретение относится к технологии получения алмаза для использования в электронике. .
Изобретение относится к области получения алмазов ювелирного качества и может быть использовано для высококачественной очистки алмазов. .

Изобретение относится к углеродным материалам, которые могут быть использованы в нанотехнологии, в медицинской технике, электронике, машиностроении и т.д. .
Изобретение относится к области обработки алмазов и бриллиантов высокими давлениями при высокой температуре и может быть использовано на предприятиях, обрабатывающих алмазы, для обесцвечивания и ослабления напряжений в кристаллах.

Изобретение относится к получению алмазов ювелирного качества из низкосортных недекоративно окрашенных так называемых «коричневых» алмазов, особенно алмазов типа IIa и типа IaA/В, в которых азот образует преимущественно В-центры, для улучшения их цвета.

Изобретение относится к области выращивания малоазотных монокристаллов алмаза, предназначенных для изготовления различных видов однокристального алмазного инструмента, в частности к устройству реакционной ячейки многопуансонного аппарата типа "БАРС".

Изобретение относится к области обработки драгоценных камней, в частности алмазов, и может найти применение в ювелирной промышленности. .

Изобретение относится к области новой технологии создания алмазов и может быть использовано в микро- и наноэлектронике при создании новых сверхпрочных конструкционных материалов, широко применяемых в различных отраслях машиностроения, в производстве полупроводниковых светодиодов на алмазной основе, а также при создании ювелирных изделий.

Изобретение относится к обогащению полезных ископаемых и может быть использовано на алмазодобывающих предприятиях. .
Изобретение относится к области получения алмазов ювелирного качества и может быть использовано для высококачественной очистки алмазов. .
Изобретение относится к области обработки алмазов и бриллиантов высокими давлениями при высокой температуре и может быть использовано на предприятиях, обрабатывающих алмазы, для обесцвечивания и ослабления напряжений в кристаллах.

Изобретение относится к получению алмазов ювелирного качества из низкосортных недекоративно окрашенных так называемых «коричневых» алмазов, особенно алмазов типа IIa и типа IaA/В, в которых азот образует преимущественно В-центры, для улучшения их цвета.

Изобретение относится к производству искусственных алмазов с помощью взрыва и может быть использовано для получения материалов со специальными свойствами. .

Изобретение относится к получению водорода и сверхтвердых материалов из веществ, содержащих соединения углеводородов, например из природного газа, и может быть использовано в энергетике, машиностроении и охране окружающей среды.

Изобретение относится к получению сверхтвердых материалов. .
Наверх