Устройство для разделения радиоактивных элементов, обладающих различной способностью к образованию амальгам

Изобретение относится к устройствам для разделения и глубокой очистки радиоактивных элементов, обладающих различной способностью к образованию амальгам, и может найти применение в радиохимической промышленности для выделения радиоактивных изотопов, используемых в медицине, в аналитической химии для выделения анализируемого элемента. Изобретение содержит полупротивоточное устройство для разделения радиоактивных элементов, обладающих различной способностью к образованию амальгам, методом цементации одного из элементов, электролизную, разделительную и регенерационные ячейки, расположенные вертикально одна под другой, снабженные мешалками, расположенными на одном валу, емкость для сбора регенерированной ртути и транспортирующим шнеком, плотно посаженным в трубу и вращающимся вместе с трубой, а ртуть перемещается из ячейки в ячейку через гидрозатворы под действием силы тяжести. Техническим результатом заявленного изобретения является работа дистанционно управляемого устройства в условиях радиационно-защитных камер. 1 ил.

 

Изобретение относится к устройствам для разделения и глубокой очистки радиоактивных элементов, обладающих различной способностью к образованию амальгам, и может найти применение в радиохимической промышленности для выделения радиоактивных изотопов, используемых в медицине, в аналитической химии для выделения анализируемого элемента.

Существует много типов амальгамных реакторов периодического либо непрерывного действия (В.А.Смирнов. «Восстановление амальгамами», изд-во «Химия», Ленинградское отделение, 1970, стр.49-54). Промышленные реакторы не подходят для разделения радиоактивных элементов из-за их больших габаритов и невозможности дистанционного управления их работой в условиях радиационно-защитных камер.

Наиболее близким к заявляемому является устройство с непрерывной регенерацией амальгамы (там же, стр.51). Оно состоит из кристаллизатора, залитого слоем ртути толщиной в 1 см. Сверху ртуть накрыта стеклянным колоколом, который устанавливают на подставках для создания зазора между нижним его обрезом и дном кристаллизатора в 1-2 мм. В наружное кольцевое пространство заливают 40% раствор щелочи, в который помещают никелевый анод. Катодом служит ртуть. Образующаяся при электролизе амальгама увлекается во внутреннее пространство прибора, где контактирует с загруженным в него раствором восстанавливаемого вещества.

Это устройство просто по конструкции, представляет собой замкнутую систему. Но оно имеет ряд существенных недостатков:

- невозможность регулирования концентрации амальгамы в реакционном пространстве;

- невозможность эксплуатации установки в условиях радиационно-защитных камер.

Задание настоящего изобретения является создание дистанционно управляемого устройства, работающего в условиях радиационно-защитных камер, для разделения радиоактивных элементов и получения радиохимически чистых препаратов.

Для решения этой задачи предлагается полупротивоточное устройство для разделения радиоактивных элементов, обладающих различной способностью к образованию амальгам, методом цементации одного из элементов, содержащее электролизную, разделительную и регенерационные ячейки, расположенные вертикально одна под другой, снабженные мешалками, расположенными на одном валу, емкость для сбора регенерированной ртути и транспортирующим шнеком плотно посаженным в трубу и вращающимся вместе с трубой, причем катодом в электролизной ячейке служит ртуть, а анодом платиновое кольцо, расположенное в верхней части электролизной ячейки, а ртуть перемещается из ячейки в ячейку через гидрозатворы под действием силы тяжести.

Устройство для разделения радиоактивных элементов, обладающих различной способностью к образованию амальгам, представленное на чертеже, состоит из электролизной ячейки 1, разделительной ячейки 2, регенерационных ячеек 3, емкости для сбора ртути 4, транспортирующего шнека 5, привода шнека 6, мешалок 7, с электроприводом 8 и гидрозатворов 9.

Разделительная и электролизная ячейки выполнены из оргстекла, регенерационные ячейки - из нержавеющей стали.

Блочная компоновка устройства позволяет засылать аппарат в радиационно-защитную камеру в разобранном виде (блоками) по транспортеру, собирать и обслуживать копирующими манипуляторами.

Тяжелая фаза (ртуть) движется из ячейки в ячейку сверху вниз под действием сипы тяжести.

Образование амальгамы натрия происходит в электролизной ячейке под действием электрического тока. Анодом служит платиновое кольцо, расположенное в растворе натриевой щелочи, постоянно протекающей через ячейку, ртуть является катодом. Дозирование ртути в электролизную ячейку осуществляется транспортирующим шнеком, плотно посаженным в трубу (5) и вращающимся вместе с трубой с помощью отдельного привода (6). При вращении шнека ртуть поднимается по винтовой канавке и поступает в электролизную ячейку. Концентрация образующейся амальгамы в ячейке регулируется скоростью вращения шнека и силой тока.

Амальгама натрия заданной концентрации из электролизной ячейки перетекает через гидрозатвор в разделительную ячейку, расположенную под электролизной. В разделительную ячейку заливают водный раствор разделяемых элементов такого состава, при котором амальгама натрия восстанавливает только один элемент, оставляя другой в ионном виде. Образовавшаяся в результате этого процесса амальгама поступает через гидрозатвор в регенерирующие ячейки, расположенные под разделительной ячейкой.

Из регенерационных ячеек очищенная ртуть поступает в сборник ртути (4) и далее шнеком в электролизную ячейку.

Таким образом, элемент, обладающий большей способностью к образованию амальгамы, выводится из системы с регенерирующим раствором в отдельную фракцию. Второй разделяемый элемент остается в неподвижной водной фазе в разделительной ячейке и по окончании процесса извлекается из нее.

Отличительными признаками предлагаемого решения является:

Вертикальное расположение ячеек установки, позволяющее использовать для передвижения ртути по ячейкам силу тяжести и один привод для вращения мешалок во всех ячейках.

Использование для возврата и дозирования ртути в электролизную ячейку шнека с регулируемой скоростью вращения, позволяющее задавать необходимую концентрацию амальгамы натрия и многократно использовать ртуть.

Полупротивоточный режим проведения процесса, позволяющий осуществлять разделение элементов, выводя один из ник из разделительной ячейки с ртутью в виде амальгамы, оставляя другой в водном растворе.

Блочное исполнение узлов установки, позволяющее осуществлять дистанционное обслуживание установки в условиях радиационно-защитных камер.

Пример использования

Получение препарата гадолиний-153.

Гадолиний-153 получают облучением природного европия в ядерном реакторе по реакции (n, γ). В облученном материале γ-активность изотопа Gd-153 составляет 15-20% от общей γ-активности. Для применения в ядерной медицине препарат гадолиний-153 должен содержать γ-примесей не более 7·10-4%.

Мишень со стартовой загрузкой природного европия 9 г (по металлу) после облучения в реакторе и выдержки в бассейне растворили и проанализировали. В растворе содержалось 1080 Ки изотопов европия и 110 Ки гадолиния-153, что соответствовало ˜1 г изотопов гадолиния и около 8 г радиоактивных изотопов европия.

Образовавшуюся смесь европия и гадолиния перерабатывали на установке. Исходный раствор европия и гадолиния перенесли в разделительную ячейку.

Амальгама натрия образовывалась в электролизной ячейке при силе тока 5 А и напряжении 12 В. Ртуть в ячейку подавали шнеком со скоростью 4 мл/мин. При этих условиях концентрация натрия в амальгаме составляла 0,11%. (При подаче ртути со скоростью 2 мл/мин концентрация натрия в амальгаме была 0,165%).

Амальгама натрия из электролизной ячейки через гидрозатвор поступала в разделительную ячейку, в которой натрий восстанавливает европий до металла, оставляя гадолиний в ионном виде. Металлический европий взаимодействует с ртутью, образуя амальгаму европия, которая через гидрозатвор поступает в 1-ю регенерационную ячейку. Из амальгамы европия в 1-й регенерационной ячейке 99,9% европия вымывается раствором азотной кислоты в отдельную фракцию, из которой выделяется в виде оксида европия. Ртуть из 1-й регенерационной ячейки поступает во 2-ю и 3-ю, освобождаясь полностью от примесей. Очищенная ртуть самотеком попадает в емкость для сбора ртути, из нее шнеком подается в электролизную ячейку. Таким образом, установка работает в автоматическом режиме. Раствор с гадолинием после окончания процесса слили из разделительной ячейки и извлекли гадолиний в виде оксида. В гадолинии после 1-го цикла цементации содержалось 0,55 Ки изотопов европия. То есть коэффициент очистки гадолиния от европия был равен 2·103. Необходимая очистка гадолиния достигалась на последующих циклах цементации.

Устройство для разделения радиоактивных элементов, обладающих различной способностью к образованию амальгам, характеризующееся тем, что оно имеет электролизную, разделительную и регенерационную ячейки, расположенные вертикально одна под другой, снабженные мешалками, расположенными на одном валу, емкость для сбора регенерированной ртути, трубу, транспортирующий шнек, плотно посаженный в трубу и вращающийся вместе с ней с отдельным приводом, ртуть перемещается из ячейки в ячейку через гидрозатворы под действием силы тяжести.



 

Похожие патенты:
Изобретение относится к области химической и радиохимической промышленности и может быть использовано для получения нитридного ядерного топлива (мононитрида урана и смеси мононитридов урана и плутония).
Изобретение относится к области радиохимии и может быть использовано в аналитической химии. .

Изобретение относится к способу совместного осаждения актиноидов со степенью окисления (IV), в котором селективный органический комплексообразователь, состоящий из атомов кислорода, углерода, азота, водорода или из карбоновой кислоты, добавляют в водные растворы, содержащие актиноиды в степени окисления (IV), проводят одновременное осаждение по крайней мере двух комплексных соединений актиноидов, затем осадок прокаливают.

Изобретение относится к способам стабилизации плутония в четырехвалентном состоянии в азотнокислых растворах. .

Изобретение относится к области получения плутония и его соединений. .
Изобретение относится к переработке и утилизации твердых радиоактивных отходов предприятий атомной промышленности. .

Изобретение относится к технологии вскрытия концентратов редкоземельных элементов из природных фосфорсодержащих концентратов. .
Изобретение относится к химии трансурановых элементов и может быть использовано при разделении плутония и нептуния. .

Изобретение относится к радиохимии и может быть использовано для выделения и очистки плутония. .

Изобретение относится к способу растворения плутония или сплава плутония. .

Изобретение относится к регенеративному материалу на основе оксисульфида редкоземельного металла и регенератору, в котором используют такой материал. .
Изобретение относится к области получения катализаторов полимеризации сопряженных диенов на основе карбоксилатов редкоземельных элементов (РЗЭ) и может найти применение при производстве цис-1,4-гомополимеров и цис-1,4-сополимеров в промышленности синтетических каучуков.

Изобретение относится к технологии выделения редкоземельных элементов (РЗЭ) при комплексной переработке минерального сырья, преимущественно гидрохлоридной технологии эвдиалитового концентрата.
Изобретение относится к усовершенствованным способам (вариантам) получения солей неодима и органических кислот, применяемых в качестве компонентов при приготовлении металлокомплексных катализаторов.
Изобретение относится к химической технологии получения соединений редкоземельных элементов и может быть использовано в производстве полирующего материала для обработки оптического стекла.

Изобретение относится к способу выделения и очистки мультикюриевых количеств Y90 с достаточной степенью химической и радиохимической чистоты для использования в медицине без применения ряда селективных по Sr90 экстракционных хроматографических колонок при минимальных потерях исходного радиоактивного Sr 90 и отработанного потока.
Изобретение относится к теплозащитным покрытиям, выполненным из керамических материалов, и к металлическим изделиям, имеющим такие теплозащитные покрытия. .

Изобретение относится к химической промышленности, конкретно к переработке фосфогипса - крупнотоннажного побочного продукта производства фосфорной кислоты сернокислотным методом, содержащего ценные химический вещества, такие как кальций, редкоземельные элементы.
Изобретение относится к области технологии неорганических веществ. .
Изобретение относится к неорганической химии редкоземельных металлов, в частности к неорганической химии скандия
Наверх