Способ получения радиопоглощающих покрытий

Изобретение относится к способам получения многослойных радиопоглощающих покрытий и материалов для защиты биологических объектов от СВЧ-излучения, маскировки изделий военного назначения, снижения помех в электронных устройствах, уменьшения уровня шума в помещениях с работающей СВЧ-аппаратурой и т.п. Радиопоглощающий пленочный материал используется в виде накидок или наклеивается на внутренние стенки электронного прибора, на стены помещения и т.п., либо наносится пульверизатором на защищаемую поверхность. Способ получения радиопоглощающего покрытия заключается в нанесении радиопоглощающего материала на защищаемую поверхность в несколько слоев с промежуточной сушкой каждого слоя и помещением по крайней мере в один из слоев разрезных колец из электропроводящего материала, причем, по крайней мере, один из слоев радиопоглощающего покрытия изготавливают из композиционного материала с ферромагнитными свойствами, а само покрытие обрабатывают в поле постоянного магнита так, что вектор напряженности магнитного поля лежит в плоскости покрытия. Технический результат - получение покрытия, которое имело бы не только достаточно высокое радиопоглощение при толщинах менее 1 мм в широком диапазоне длин волн, но радиопоглощение, которое можно было бы изменять при необходимости как в целом, так и в отдельных его частях. 1 табл.

 

Предлагаемое изобретение относится к материалам, поглощающим радиоизлучение, и предназначено для применения в виде покрытия, которое наносится на изделие исследовательского, медицинского, бытового и др. назначения.

Известны различные способы изготовления материалов и покрытий для поглощения радиоизлучения. По одному из способов [Ю.К.Ковнеристый, И.Ю.Лазарева, А.А.Раваев. Материалы, поглощающие СВЧ-излучение, M., Наука, 1982 г., стр.85] из графита, керметов и т.п. материалов изготавливают геометрические фигуры (например, цилиндры, конусы) различных размеров и закрепляют их на поверхности в определенном порядке. Недостатком такого способа является большой объем и масса поглощающих устройств. Их обычно применяют для поглощения излучения внутри помещения, закрепляя их на стенках и потолках.

По другому способу [Я.А.Шнейдерман, Зарубежная радиоэлектроника, 1972, №7, 1975, №3] вначале изготавливают тканные или пленочные материалы с использованием металлической сетки и закрепляют материал на поверхности. Этот способ применяется, в основном, для экранирования каких-либо поверхностей и для защиты биологических объектов. Недостатком этого способа является большая доля отраженного излучения.

Известен также способ [Ю.К.Ковнеристый, И.Ю.Лазарева, А.А.Раваев. Материалы, поглощающие СВЧ-излучение, М., Наука, 1982 г., стр.46, 88], по которому в жидкое полимерное связующее или его раствор вводят дисперсный поглощающий наполнитель (графит, феррит, сегнетоэлектрики, металлические сплавы типа "альсифер" т.п.), а затем полученный жидкий материал наносят на защищаемую металлическую поверхность.

Наиболее близким к предлагаемому способу и принятому в качестве прототипа является способ, при котором получают сначала жидкий материал при смешивании связующего (синтетического или природного) и порошкообразного наполнителя, который затем наносят на защищаемую поверхность в несколько слоев с промежуточной сушкой между слоями, причем по крайней мере в один из слоев перед сушкой помещают различные кольца из электропроводящего материала (патент РФ №2200177 от 07.08.2001 г.).

Недостатком указанного способа получения радиопоглощающего покрытия является невозможность регулирования радиопоглощения в процессе эксплуатации. В то же время иногда в связи со сменой внешних условий (изменение местоположения объекта, смена времени года) необходимо изменить частично или полностью радиопоглощение покрытия. Если покрытие применяется в виде накидки, то ее приходится менять, а если покрытие нанесено непосредственно на объект, то его приходится заново покрывать радиопоглощающим покрытием. В противном случае отличие объекта от местности его демаскирует.

Смена накидки или новое покрытие связано с высокой трудоемкостью и временными потерями.

Предлагаемое изобретение направлено на получение радиопоглощающего покрытия, которое имело бы не только достаточно высокое радиопоглощение при толщинах менее 1 мм в широком диапазоне длин волн, но радиопоглощение, которое можно было бы изменять при необходимости как в целом, так и в отдельных его частях.

Указанный технический результат достигается тем, что в известном способе получения радиопоглощающего покрытия, заключающемся в нанесении радиопоглощающего материала на защищаемую поверхность в несколько слоев с промежуточной сушкой каждого слоя и помещением в один из слоев разрезных колец из электропроводящего материала, по крайней мере один из слоев радиопоглощающего покрытия изготавливают из композиционного материала с ферромагнитными свойствами, а само покрытие обрабатывают в поле постоянного магнита так, что вектор напряженности магнитного поля лежит в плоскости покрытия.

При падении плоской однородной электромагнитной волны на плоскость с бесконечной проводимостью σ происходит полное отражение электромагнитной волны и величины и , соответствующие стоячей волне, принимают следующие значения [В.В.Никольский, Т.И.Никольский. Электродинамика и распространение радиоволн. М., Наука, 1989, с.165]:

где - вектор напряженности электрического поля;

- вектор напряженности магнитного поля;

W1 - волновое сопротивление среды, из которой электромагнитное излучение падает на металлическую поверхность;

- коэффициент;

n1 - коэффициент преломления среды;

ω - круговая частота электромагнитной волны;

с - скорость света.

На границе раздела среда-металл (z=0) амплитуда магнитного поля удваивается и ток распределен с плотностью.

где - вектор плотности тока.

При нормальном падении плоской электромагнитной волны на слой магнитодиэлектрика (поглотителя электромагнитных волн) толщиной d относительное входное сопротивление вычисляется из выражения [Г.Ф.Алимин, В.А.Торгованов. Методы расчета поглотителя электромагнитных волн. Зарубежная электроника, 1976, №8, с.64.]

где волновое сопротивление свободного пространства,

волновое сопротивление магнитодиэлектрика:

Относительное входное сопротивление слоя магнитодиэлектрика W2/W1, если толщина слоя d очень мала

то имеет место следующее приближенное равенство:

тогда

где μ', μ" - составляющие комплексного значения магнитной проницаемости μ2 магнитодиэлектрика;

ε1, ε2 - значения диэлектрической проницаемости среды, из которой падает электромагнитное излучение, и магнитодиэлектрика, соответственно.

Т.к. электрическое поле сосредоточено вблизи металлической поверхности, диэлектрическая проницаемость ε2 очень тонкого слоя поглотителя, нанесенного на металлическую поверхность, не играет никакой роли, поэтому в выражении (1) содержится только магнитная проницаемость. Т.о. при падении плоской электромагнитной волны на тонкий слой поглотителя (магнитодиэлектрика), нанесенного на металлическую поверхность, слой может обладать одновременно электрическими и магнитными потерями или только магнитными потерями.

При полном поглощении коэффициент отражения R=0, а для волновых сопротивлений должно выполняться равенство W1=W2.

При этом из (1) следует:

Отсюда:

Т.о. для эффективного поглощения тонким магнитодиэлектрическим слоем (поглотителем) на металлической поверхности необходимо, чтобы слой имел высокие значения μ". Поскольку условие W1=W2 трудно осуществить для широкого диапазона, то в любом случае часть электромагнитной энергии отразится от поглотителя, а часть пройдет до металла и отразится от него. Вектор магнитной составляющей, амплитуда которого удваивается, может эффективно поглотить в широком диапазоне частот. Только тогда, когда вектор намагниченности лежит в плоскости поглотителя.

Пример конкретного выполнения предлагаемого способа. Изготавливают 3 образца поглощающего материала. На металлическую пластину из сплава D16AT размерами 200×200 мм2 наносят поглощающее покрытие толщиной 0.5 мм с соотношением по объему (наполнитель:связующее) 1:1. В качестве связующего поглощающего покрытия взяли поливинилбутираль, а в качестве наполнителя - нанопорошок из магнитного сплава НК-29 (состава: Ni - 29,13%; Со - 17,51%; Fe - остальное). Далее производят сушку при температуре 25°С. На поверхности покрытия размещают константановые кольца диаметром 10 мм. После этого наносят еще один слой поглощающего покрытия того же состава толщиной 0.5 мм и производят сушку при температуре 25°С.

Один образец обрабатывают в поле постоянного магнита так, что вектор напряженности магнитного поля лежит в плоскости покрытия. Второй образец обрабатывают в поле постоянного магнита так, что вектор напряженности магнитного поля лежит перпендикулярно плоскости покрытия. Третий образец берут исходный. Затем проводят измерения поглощения образцов в открытом пространстве с разнесенным генератором и приемником. Результаты измерения для различных образцов сведены в табл.1.

Из таблицы 1 следует, что обработка образца покрытия в поле постоянного магнита так, чтобы вектор напряженности магнитного поля находился в плоскости образца (обр.1), приводит к тому, что уровень поглощения почти на всех измеряемых длинах волн повышается на 25-50%, по сравнению с необработанными покрытиями (обр.3). Обработка покрытия в поле постоянного магнита так, что вектор напряженности магнитного поля лежит перпендикулярно поверхности покрытия (обр.2), не меняет уровня поглощения на всех длинах волн.

Таблица 1
№ обрОписание образцаДлина волны падающего излученияПоглощение излучения образцом, дБ
1.Поглощающее на основе3,015,0
нанопорошка, полученного из3,5315,0
сплава НК-29, толщиной 1,0 мм4,025,0
с кольцами диаметром 10 мм из7,525,0
константановой проволоки.10,020,0
Покрытие нанесено на подложку из сплава D16AT размерами 200×200 мм2 и обработали в постоянном магнитном поле так, что вектор напряженности магнитного поля лежал в плоскости покрытия.12,010,0
2.Поглощающее на основе3,010,0
нанопорошка, полученного из3,5310,0
сплава НК-29, толщиной 1,0 мм4,025,0
с кольцами диаметром 10 мм из7,520,0
константановой проволоки.10,015,0
Покрытие нанесено на подложку из сплава D16AT размерами 200×200 мм2 и обработали в постоянном магнитном поле так, что вектор напряженности магнитного поля лежал перпендикулярно плоскости покрытия.12,010,0
3.Поглощающее композитного3,010,0
покрытия на основе3,5310,0
нанопорошка, полученного из4,025,0
сплава НК-29, толщиной 1,0 мм с7,520,0
кольцами диаметром 10 мм из10,015,0
константановой проволоки. Покрытие нанесено на подложку из сплава D16AT размерами 200×200 мм2.12,010,0

Способ получения радиопоглощающего покрытия, заключающийся в нанесении радиопоглощающего материала на защищаемую поверхность в несколько слоев с промежуточной сушкой каждого слоя и помещением в один из слоев разрезных колец из электропроводящего материала, отличающийся тем, что, по крайней мере, один из слоев радиопоглощающего покрытия изготавливают из композиционного материала с ферромагнитными свойствами, а сам слой обрабатывают в поле постоянного магнита так, что вектор напряженности магнитного поля лежит в плоскости покрытия.



 

Похожие патенты:

Изобретение относится к способу получения состава и составу для материалов, поглощающих электромагнитное излучение. .

Изобретение относится к способу получения и составу композиционных магнитно-диэлектрических материалов, поглощающих электромагнитное излучение. .

Изобретение относится к (со)полимерным и/или олигомерным композициям и касается состава для получения люминесцентных и селективно поглощающих оптическое излучение материалов.

Изобретение относится к способам получения радиопоглощающих материалов и предназначено для применения в виде покрытия, которое наносится на изделия медицинского, исследовательского, бытового и др.

Изобретение относится к новым частицам диоксида титана, обладающим солнцезащитными свойствами и используемым в косметических составах. .

Изобретение относится к поглотителям электромагнитных волн (ЭМВ) в диапазоне сверхвысоких частот (СВЧ) и может быть использовано для уменьшения радиолокационной видимости объектов различного назначения и конфигурации.

Изобретение относится к кроющей композиции, способной к самоочищению, способу ее получения, способу получения конструкционного наружного материала и самоочищающейся подложке
Изобретение относится к радиоэлектронной технике, в частности к получению полимерных композиций, предназначенных для поглощения паразитных излучений в замкнутом герметичном объеме СВЧ-устройств

Изобретение относится к покрытию, поглощающему электромагнитное излучение

Изобретение относится к композиционным материалам для поглощения электромагнитных волн

Изобретение относится к радиотехнике, в частности к поглотителям электромагнитных волн, в том числе в диапазоне сверхвысоких частот, и может быть использовано для обеспечения электромагнитной совместимости радиоэлектронных средств, биологической защиты от влияния радиоизлучений, создаваемых различными научными и бытовыми приборами, снижения радиолокационной заметности различных объектов и направлено на понижение коэффициента отражения электромагнитных волн и расширение интервала частот радиопоглощающего материала, а также упрощение способа его получения
Изобретение относится к полимерной композиции для поглощения высокочастотной энергии
Изобретение относится к области рецептуры и технологии нанесения радиопоглощающих покрытий, наносимых на металлические или резиновые поверхности

Изобретение относится к лакокрасочным композициям, предназначенным для экранирования электромагнитного излучения

Изобретение относится к многофункциональным покрытиям, обеспечивающим радиопоглощение, и может быть применено в радиотехнике
Наверх