Способ получения карбида кремния из рисовой шелухи

Изобретение относится к технологии получения карбида кремния, используемого в керамической промышленности. Способ получения карбида кремния включает кислотную обработку рисовой шелухи с последующим нагреванием в графитовом тигле со скоростью подъема температуры не более 1000°С/мин с выдержкой при температуре 1400°С в течение 0,1 часа. Термообработку полученного продукта проводят при 700°С в течение не менее 2 часов. Результат изобретения: разработка более экономичного и технологичного способа получения порошка карбида кремния из рисовой шелухи. 1 з.п. ф-лы.

 

Изобретение относится к технологии получения карбида кремния, используемого в керамической промышленности.

В известном способе (Патент СССР №SU 1699917 А1, кл С 01 В 31/36, 1989.) рисовую шелуху обрабатывают последовательно водными растворами сульфата железа и аммиака для осаждения на поверхности частиц гидролизного лигнина рисовой шелухи в качестве катализатора гидроокиси железа, а затем продукт подвергают термообработке при 1400-1600°С в инертной среде аргона в корундовых лодочках в течение 5 часов.

Наиболее близким по составу и технической сущности является способ (Патент США №4591492, кл. С 01 В 31/36, 1986.), в котором рисовую шелуху обрабатывают в кислотном растворе (Н2SO4, HCl, HNO3) в течение 0,5 часа и затем материал на подложке помещают в герметичную печь с тремя температурными зонами в интервале от 400 до 1350°С. Материал на подложке последовательно пропускают через указанные зоны в направлении повышения температур. В каждой зоне материал выдерживают не менее 0,5 часа. Через нагретый материал пропускают инертный газ - аргон. Декарбонизацию проводят при 900°С. Весь процесс может длиться до 24 часов.

Недостатками указанных способов являются: создание специальной реакционной печи с последовательно увеличиваемой температурой зонами, инертной неокислительной среды (аргона), а также длительность высокотемпературной обработки, что обуславливает техническую сложность и дороговизну процесса.

Задачей изобретения является разработка более экономичного и технологичного способа получения порошка карбида кремния из рисовой шелухи.

Решение поставленной задачи достигается тем, что рисовую шелуху, предварительно очищенную от включений, промытую водой, обработанную кислотой и высушенную, нагревают в графитовом тигле при скорости подъема температуры не более 1000°С/мин, выдерживают при 1400°С в течение 0,1 часа, далее проводят термообработку полученного продукта при 700°С в течение 2 часов.

Синтез карбида из компонентов рисовой шелухи ведут при температуре 1400°С в течение 0,1 часа с последующим произвольным охлаждением.

Для реакции карбидообразования стехиометрическое отношение SiO2/C равно 1,67, однако оптимальное соотношение для получения карбида кремния из рисовой шелухи составляет примерно 1,37, которое можно достичь при скорости нагрева порядка 1000°С/мин. Медленный нагрев может привести даже к полной десорбции углерода, более быстрый нагрев приводит к его избыточному содержанию.

В случае синтеза при температурах <1400°С процесс карбидообразования идет не до конца и продукт загрязняется углеродом и диоксидом кремния. В случае синтеза при температурах >1400°С процесс карбидообразования идет наиболее полно, но при этом имеет место образование карбида кремния β-SiC гексагональной сингонии, а также стеклофазы вследствие плавления остаточного диоксида кремния. Кроме того, увеличиваются энергозатраты.

В случае выдержки <0,1 часа процесс карбидообразования идет не до конца. Выдержка >0,1 часа приводит к образованию стеклофазы вследствие плавления остаточного диоксида кремния, а также к повышению энергозатрат.

С целью удаления остаточного углерода - декарбонизации смеси проводят последующую обработку при температуре 700°С в течение не менее двух часов. После такой обработки получают порошкообразный карбид зеленого цвета.

Пример.

Очищенная на зерновом вибросите от крупных (солома, стебли) и мелких включений (пыль, посторонние примеси размером менее 2 мм), промытая в воде и в 10-%-ном кислотном растворе, высушенная при 150°С рисовая шелуха (согласно рентгенограммам, в аморфизованном состоянии) в количестве 50 г помещается в графитовый тигель, который устанавливается в печь и нагревается со скоростью 1000°С/мин до 1400°С. Синтез проводится при температуре 1400°С в течение 0,1 часа. Получают порошки темного цвета с частицами в виде соломок в количестве 20 г. Для удаления остаточного углерода - декарбонизации проводится последующая термическая обработка при температуре 700°С в течение не менее двух часов. После такой обработки получают порошкообразный материал зеленого цвета в количестве 10 г. Рентгенографические исследования показали, что материал состоит из 48,31% β-SiC объемно-центрированной кубической сингонии и 49,41% двуокиси кремния SiO2 кристобалитной модификации. Дисперсность порошкового материала составляет порядка 0,2-0,5 мкм.

Процесс карбидообразования не требует пропускания аргона, что упрощает и удешевляет технологию получения материала. Сокращение времени протекания процесса и понижение температуры декарбонизации снижают энергозатраты и удешевляют стоимость продукции.

1. Способ получения карбида кремния из рисовой шелухи, включающий ее обработку раствором кислоты, термообработку, охлаждение и последующую термообработку полученного продукта, отличающийся тем, что термообработку рисовой шелухи ведут в графитовом тигле со скоростью подъема температуры не более 1000°С/мин и выдержкой при температуре 1400°С в течение 0,1 ч.

2. Способ по п.1, отличающийся тем, что термообработку полученного продукта проводят при 700°С в течение не менее 2 ч.



 

Похожие патенты:
Изобретение относится к способам получения порошкового материала на основе карбида кремния, который может быть использован для изготовления керамических изделий.
Изобретение относится к области производства абразивных материалов и может быть использовано при получении карбида кремния. .
Изобретение относится к области композиционных материалов, а точнее к алмазосодержащим композиционным материалам с высокой теплопроводностью и температуропроводностью.
Изобретение относится к области химической технологии получения твердофазных наноструктурированных материалов, а именно к способу получения наноструктур (в том числе нанотрубок) из углерода, нитрида углерода, нитрида бора, карбидов металлов и т.

Изобретение относится к области производства конструкционных изделий на основе графита, в частности силицированного графита, предназначенного для использования в народном хозяйстве в опорных и упорных подшипниках, подшипниках скольжения, торцовых уплотнениях насосов, перекачивающих различные жидкости, в том числе с абразивными частицами, в производстве облицовочных плит в химическом и металлургическом производствах, в производстве стеклянных и минеральных волокон и т.д.
Изобретение относится к области производства керамических, износостойких, жаростойких и абразивных изделий, в частности к области получения сырьевых материалов для производства указанных изделий, и может быть использовано при получении карбида кремния -модификаций.

Изобретение относится к монокристаллическому карбиду кремния SiC и способу его получения, в частности к монокристаллическому SiC, используемому в качестве полупроводниковой подложки для светоизлучающего диода и электронного устройства или т.п., и к способу его получения.
Изобретение относится к ядерной технике. .
Изобретение относится к технологии получения порошка карбида кремния, используемого в абразивной, керамической и электротехнической промышленности
Изобретение относится к области металлургии
Изобретение относится к области нанотехнологий
Изобретение относится к неорганической химии, конкретно к получению аморфного и поликристаллического карбида кремния путем термической деструкции соединений, содержащих в своем составе только углерод, кремний и хлор, и может быть использовано для получения порошков, покрытий и объемных матриц

Изобретение относится к порошковой металлургии, а именно к производству карбидокремниевой керамики твердофазным спеканием
Изобретение относится к области производства конструкционных изделий на основе углерода или графита, в частности силицированного графита
Изобретение относится к способу непрерывного пиролитического насыщения длинномерных пористых заготовок упрочняющим или защитным материалом
Изобретение относится к способу получения композитного материала на основе -SiC, который включает: а) получение смеси, называемой «смесью-предшественником», содержащей, по меньшей мере один предшественник -SiC и по меньшей мере одну углеродсодержащую термоотверждаемую смолу, б) формование указанной смеси-предшественника в виде гранул, плит, труб или кирпичей, для получения промежуточного изделия, в) полимеризацию смолы, г) введение указанных промежуточных изделий в емкость, д) закрытие указанной емкости с помощью средства для закрывания, позволяющего избежать повышения давления газа, е) термообработку указанных промежуточных изделий при температуре 1100°-1500°С для удаления органических компонентов смолы и образования -SiC в конечном изделии
Изобретение относится к неорганической химии и может быть использовано в электронной промышленности и промышленности композиционных материалов

Изобретение относится к области нанотехнологий, а именно к технологии получения нановолокнистого карбида кремния и наноструктурированного углерода
Наверх