Способ подготовки поверхности перед нанесением ионно-плазменных покрытий

Изобретение относится к области порошковой металлургии, преимущественно к термической обработке металлов и сплавов, в частности к методам увеличения прочности сцепления ионно-плазменного покрытия к твердосплавным многогранным неперетачиваемым пластинам. Способ включает нагрев поверхности твердого сплава токами высокой частоты до температуры 1050-1100°С в течение 30-40 секунд и охлаждение в среде аргона до температуры 400-450°С. Цикл нагрев-охлаждение повторяют по указанным режимам пять раз. Техническим результатом изобретения является повышение прочности на изгиб твердого сплава, а также повышение прочности сцепления покрытия с основой. 2 ил., 1 табл.

 

Изобретение относится к области порошковой металлургии, преимущественно к термической обработке металлов и сплавов, в частности к методам увеличения прочности сцепления ионно-плазменного покрытия к твердосплавным многогранным неперетачиваемым пластинам.

Известен способ подготовки поверхности к нанесению покрытий [Табаков В.П., Полянсков Ю.В. Повышение стойкости режущего инструмента путем изменения адгезионно-прочностных свойств износостойкого покрытия. // Станки и инструмент. №3, 1990. - С.22-23], включающий в себя нагрев твердых сплавов до 900 -1100°С в вакууме с помощью бомбардировки поверхности ионами Ti и Cr, при этом повышается средняя прочность твердых сплавов за счет выравнивания микрорельефа поверхности и снижения количества концентраторов напряжений, а также повышается прочность сцепления покрытий к поверхности инструмента за счет повышения плотности поверхностных структурных дефектов.

Недостаток данного способа - незначительное повышение прочности на изгиб твердого сплава с недостаточным снижением шероховатости при ионной бомбардировке поверхности твердого сплава.

Техническим результатом является повышение прочности на изгиб твердого сплава и, следовательно, значительное снижение вероятности хрупкого разрушения твердосплавных резцов с покрытиями и повышение прочности сцепления покрытия с основой.

Заявленный технический результат достигается тем, что в способе подготовки поверхности перед нанесением покрытий, включающем нагрев поверхности до температуры 1050 - 1100°С, этот нагрев проводят токами высокой частоты в течение 30-40 секунд и охлаждают в среде аргона до температуры 400-450°С, повторяют нагрев - охлаждение по указанным режимам пять раз.

Повышение прочности на изгиб твердых сплавов происходит вследствие создания на поверхности твердых сплавов сжимающих напряжений. При спекании твердых сплавов на поверхности возникают растягивающие напряжения, так как твердый сплав относится к хрупким материалам, то наличие растягивающих напряжений значительно снижает предел прочности на изгиб. Устранение растягивающих напряжений на поверхности и создание сжимающих может происходить при условии, что нагрев будет проводиться до температуры не менее 1000°С со скоростью не менее 30 град/сек, а охлаждение должно проходить в изолированной среде до температуры меньше 450°С, обусловленной аллотропическим переходом β-Со (α→β при 486°С), имеющего гранецентрированную элементарную ячейку, в α-Со, имеющего гексагональную плртноупакованную элементарную ячейку, идентичную с элементарной ячейкой WC.

Повышение прочности сцепления покрытия с основой достигается снижением шероховатости поверхности. На фигуре 1 показан рельеф и шероховатость поверхности твердых сплавов до термоциклической обработки и в состоянии поставки. Снижение шероховатости поверхности достигается за счет пятикратного повтора термообработки по указанным режимам в нейтральной среде аргона, что показано на фигуре 2.

Поиск оптимальных режимов проводился с помощью математического планирования экстремального эксперимента.

Способ подготовки поверхности перед нанесением ионно-плазменных покрытий реализуется следующим образом. Твердосплавные неперетачиваемые пластины размером 5×5×35 мм помещают в кварцевые трубки, чтобы можно было контролировать температуру с помощью оптического фотопирометра, продувают аргоном и закрывают с обеих сторон пробками. Затем нагревают с помощью токов высокой частоты до 1050 - 1100°С в течение 30-40 секунд и охлаждают в среде аргона до температуры 400-450°С, повторяют нагрев-охлаждение по указанным режимам пять раз. Результаты выборочных экспериментов сведены в таблицу.

Таблица

Режимы термообработки и свойства твердого сплава ВК8
№ ппРежим термообработкиАбразивная износостойкость, минσизг, МПаТвердость HV, МПа
1Без термообработки115001650
2Тзак=1100°С, V=25 град/сек, Тохл=400°С в среде аргона, циклирование 3 раза1,519001500
3Тзак=1100°С, V=35 град/сек, Тохл=400°С в среде аргона, циклирование 5 раз2,626001400
4Тзак=1100°С, V=45 град/сек, Tохл=400°С в среде аргона, циклирование 7 раз1,317001550

Способ подготовки поверхности твердых сплавов перед нанесением ионно-плазменных покрытий, включающий нагрев поверхности до температуры 1050-1100°С, отличающийся тем, что нагрев поверхности проводят токами высокой частоты в течение 30-40 с и охлаждают в среде аргона до температуры 400-450°С, повторяют нагрев - охлаждение по указанным режимам пять раз.



 

Похожие патенты:

Изобретение относится к области нанесения тонкопленочных покрытий в вакууме. .

Изобретение относится к области разработки оптимальных методов сглаживания (полировки) металлических поверхностей и решает задачу повышения скорости обработки и снижения величины рабочего электрического напряжения.

Изобретение относится к технике нанесения покрытий и может быть использовано в металлургии, машиностроении и других областях техники для создания защитных покрытий из цинка, никеля, хрома или их комбинаций.

Изобретение относится к изготовлению металлических объектов с внутренними полостями сложной формы и может найти применение в различных отраслях машиностроения при изготовлении турбин, оптических систем лазеров и других.

Изобретение относится к способам нанесения покрытий и может быть использовано преимущественно для получения коррозионно-стойких декоративных покрытий золотистого цвета на изделиях для объектов, устанавливаемых на открытом воздухе: наружная реклама, надписи на зданиях, кровля и пр.

Изобретение относится к способу и устройству для получения плазмы электрического дугового разряда и для ее использования при нанесении покрытий на подложку. .

Изобретение относится к области обработки и очистки поверхности нефтяного оборудования, например насосных штанг и насосно-компрессорных труб, на различных этапах технологического процесса и может найти широкое применение в нефтедобывающей промышленности.

Изобретение относится к очистке поверхности металлических изделий. .

Изобретение относится к машиностроению, в частности к обработке в вакууме поверхности металлических изделий путем воздействия на нее пучком ионов металлов, и может быть использовано в авиационной и газовой промышленности для поддержания оптимального сочетания элементного состава ионов и энергетического уровня воздействия при подготовке поверхности изделий, например компрессорных лопаток, к нанесению на них защитных покрытий, формировании модифицированного поверхностного слоя изделий, повышающего их эксплуатационные характеристики, а также проведении исследовательских работ в области ионно-плазменной технологии

Изобретение относится к изготовлению трубопроводной арматуры, а именно шпинделей, задвижек и вентилей для перекрывания и регулирования расхода проходящих в трубопроводах сред

Изобретение относится к способу получения бесконечных полых профилированных изделий из полимеров, в частности полимерных труб

Изобретение относится к вакуумно-дуговым устройствам и может быть использовано преимущественно при проведении процесса комплексной поверхностной обработки изделий, включающей химико-термическую обработку поверхности изделия с последующим нанесением на нее функционального покрытия
Изобретение относится к способам изготовления рабочего элемента горелок со сквозной пористостью и может быть использовано в установках для газовой, нефтяной и нефтеперерабатывающей промышленности, например при изготовлении нагревателей газа на газораспределительных станциях
Изобретение относится к области технологии нанесения тонкопленочных титановых и нитридтитановых декоративных покрытий на глазурованные керамические и полимерные материалы и изделия в вакууме способом ионно-плазменного напыления и может найти применение в производстве строительных материалов и товаров народного потребления
Изобретение относится к области очистки металлических изделий, таких как катанка, проволока, полоса, поковки, отливки и других, в частности к способу электродуговой обработки поверхностей металлических изделий, и может найти применение в различных отраслях машиностроения
Изобретение относится к области консервации металлических изделий, в частности к способам получения защитных покрытий на поверхности, в труднодоступных порах и дефектах металлических изделий, и может быть использовано в машиностроении и археологии
Изобретение относится к электродуговой обработке поверхности металлических изделий в вакууме и может быть использовано в черной и цветной металлургии, а также в машиностроительных отраслях производства

Изобретение относится к способу осаждения вещества на подложку, импульсному источнику питания для магнетронного реактора и магнетронному реактору
Наверх