Способ оценки токсичности продуктов горения материалов

Изобретение относится к физико-химическим методам измерения. Способ включает измерение концентраций токсичных газов и определение показателя токсичности. Газовые компоненты, полученные в результате термодеструкции образца, оценивают на однонаправленность действия, определяют удельные массы токсичных газов и приводят их к значению одного из них с наиболее выраженным действием, которое принимают за показатель токсичности. Техническим результатом изобретения является повышение достоверности оценки токсичности продуктов термодеструкции материалов за счет использования общепринятых показателей и исключение необходимости проведения испытаний с экспозицией животных. 1 з.п. ф-лы.

 

Изобретение относится к физико-химическим методам измерения и может быть использовано при определении показателя токсичности продуктов горения материалов, используемых в шахтах.

Известен метод экспериментального определения показателя токсичности продуктов горения твердых полимерных материалов, заключающийся в том, что материал испытывают в камере в одном из двух режимов - термоокислительного разложения или пламенного горения, а именно в режиме, способствующем выделению более токсичных смесей летучих веществ (ГОСТ 12.1.044-89. ССБТ. Пожаровзрывобезопасность веществ и материалов. Номенклатура показателей и методы их определения. - М. - С.81-86). По достижении максимальных значений концентрации СО и CO2 в экспозиционной камере снимают напряжение с нагревательного элемента излучателя, вентилируют установку в течение 10 мин и регистрируют число погибших и выживших животных (белых мышей).

За показатель токсичности продуктов горения принимают отношение количества материала к единице объема замкнутого пространства, в котором образующиеся при горении материала газообразные продукты вызывают гибель 50% подопытных животных. По значению этого показателя (СНCL50) материалы могут быть отнесены к следующим классам опасности: чрезвычайно опасные, высокоопасные, умеренно опасные и малоопасные.

К недостаткам известного метода следует отнести то, что методические вопросы определения показателя токсичности разрабатывались для целей испытания только твердых полимерных материалов. При этом метод не распространяется на порошкообразные и жидкие вещества, оценка токсичности которых также во многих случаях необходима. Кроме того, требует изменений сам подход к определению показателя токсичности, основанный на эмпирической токсикометрии (испытания с экспозицией животных).

Известен способ определения показателя токсичности продуктов горения материалов экспериментально-расчетным методом, сущность которого заключается в том, что в процессе испытания измеряют концентрацию основных токсичных газов, выделяющихся в составе продуктов горения, и по данным измерений рассчитывают значения показателя токсичности, которые затем проверяют в контрольном эксперименте с экспозицией подопытных животных (Ж. Пожаровзрывобезопасность, 2005. - №3. - С.29-34).

Для определения показателя токсичности вычисляют суммарный индекс токсичности (Km), для чего используют формулу

где CCO, СCO2, C50i - средние концентрации газов, полученные при испытании, мг/м3;

CL50CO CL50CO2, CL50i - средние смертельные концентрации газов при изолированном 30-минутном воздействии на подопытных животных.

Значения показателя токсичности продуктов горения рассчитывают по формуле

где m0 - масса образца до испытания, г;

Vk - внутренний объем установки при испытании, м3.

К недостаткам известного способа определения показателя токсичности продуктов горения материалов следует отнести:

невысокую степень достоверности оценки, т.к. средние смертельные концентрации газов для разных условий и объектов испытаний могут отличаться в несколько раз;

необходимость выполнения большого количества измерений и расчетов.

Техническим результатом изобретения является повышение достоверности оценки токсичности продуктов термодеструкции материалов за счет использования таких показателей, как предельно допустимые концентрации газов (ПДК) для воздуха рабочей зоны, и исключение необходимости проведения испытаний с экспозицией животных.

Предложен способ оценки токсичности продуктов горения материалов, включающий измерение концентраций токсичных газов, выделяющихся в процессе термодеструкции образца, и определение показателя токсичности.

Отличием предложенного способа является то, что газовые компоненты, полученные в результате термодеструкции образца, оценивают на однонаправленность действия, определяют удельные массы токсичных газов и приводят их к значению одного из них с наиболее выраженным действием, которое принимают за показатель токсичности:

где G1, G2...Gn - удельные массы токсичных газов, мг/г;

ПДК1, ПДК2...ПДКn - предельно допустимые концентрации вредных веществ для воздуха рабочей зоны, мг/м3.

Другим отличием предложенного способа является то, что удельные массы токсичных газов однонаправленного действия приводят к удельной массе оксида углерода и при значениях приведенной удельной массы до 40 мг/г материалы относят к малоопасным, при значениях от 40 до 120 мг/г - умеренно опасным, при значениях от 120 до 360 мг/г - высокоопасным и при значениях более 360 мг/г - чрезвычайно опасным.

Сущность предложенного способа поясняется примером.

Пример.

Для оценки токсичности продуктов горения конвейерной ленты 2ШТК 200×4 изготавливают образец с площадью основания 2,88-10-4 м2 и массой 6,1·10-3 кг. Для исследования термической деструкции материалов может быть использована установка по свидетельству РФ на полезную модель №14083 конструкции НЦ ВостНИИ.

В качестве источника горения используют керамическую реакционную камеру с регулируемой температурой от 100 до 1000°С. Контроль температуры осуществляют с помощью платиновых термопар. Образец перед испытанием кондиционируют, т.е. выдерживают в стандартной атмосфере при температуре 23±2°С и влажности 50-60% (ГОСТ 12.1.044-89). В режиме пламенного горения (температура 700°С) время деструкции образца материала составляет 125 с при расходе воздуха в реакционной камере 1,67×10-4 м3/с.

Качественный и количественный анализ газов, полученных в результате термодеструкции образца, проводят на хроматографе и фотоколориметре.

За время деструкции (τ) масса образца уменьшилась на 3,6·10-3 кг и составила 2,5·10-3 кг, при этом были получены следующие газовые компоненты: СО, CO2, NO+NO2, HCI и HCN со значениями концентраций соответственно 19,5·103; 49,3·103; 1,7; 47,3; 4,5 мг/м3.

Удельную массу токсичных газов, образовавшихся при термической деструкции материала, определяют по формуле:

где Сi - концентрация газа, мг/м3;

V - расход воздуха в реакционной камере, м3/с;

τ - время деструкции образца, с;

Δm - масса сгоревшего материала, г.

GCO=113,1 мг/г;

GCO2=287,6 мг/г;

GNO+NO2=0,01 мг/г;

GHCl=0,27 мг/г;

GHCN=0,026 мг/г.

Присутствующие в воздухе газовые компоненты термодеструкции материала оценивают на однонаправленность действия по ГОСТ 12.1.005-88 (ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны). Значения удельных масс всех вредных веществ продуктов термодеструкции исследуемого материала, обладающих суммацией вредного действия, приводят к значению удельной массы одного из них, обладающему наиболее выраженным действием, например к СО, и данное значение принимают за показатель токсичности (G).

где G1, G2...Gn - удельные массы токсичных газов, мг/г;

ПДК1, ПДК2...ПДКn - предельно допустимые концентрации вредных веществ для воздуха рабочей зоны, мг/м3 (определяются из ГОСТ 12.1.005-88, ГН 2.2.5.1313-03, ПБ 05-618-03 Правила безопасности в угольных шахтах).

G=(113,1+287,6·20/9821,4+0,01·20/5+0,27·20/5+0,026·20/0,3)=

=(113,1+287,6·0,002+0,01·4+0,27·4+0,026·66,7)=116,5 мг/г.

Классификация материалов по значению показателя токсичности в предложенном способе принята в соответствии с ГОСТ 12.1.044-89. ССБТ, т.е. в зависимости от значения приведенной удельной массы токсичных газов к СО как к компоненту с наиболее выраженным токсическим действием. Выделяют следующие классы опасности:

до 40 мг/г материалы - малоопасные;

от 40 до 120 мг/г - умеренно опасные;

от 120 до 360 мг/г - высокоопасные;

более 360 мг/г - чрезвычайно опасные.

Таким образом, по значению показателя токсичности (приведенной удельной массы токсичных газов однонаправленного действия) исследуемый материал (конвейерная лента 2ШТК 200×4) относится к умеренно опасным материалам.

Предложенный способ может быть использован для оценки токсичности твердых, порошкообразных и жидких материалов, теоретические основы его соответствуют ГОСТ 12.1.044-89. ССБТ (Пожаровзрывобезопасность веществ и материалов. Номенклатура показателей и методы их определения. - М. - С.81-86) и для его реализации не требуется проведения эмпирической токсикометрии с использованием животных.

1. Способ оценки токсичности продуктов горения материалов, включающий измерение концентраций токсичных газов, выделяющихся в процессе термодеструкции образца, и определение значения показателя токсичности, отличающийся тем, что газовые компоненты, полученные в результате термодеструкции образца, оценивают на однонаправленность действия, определяют удельные массы токсичных газов и приводят их к значению удельной массы одного из них с наиболее выраженным действием, которое принимают за показатель токсичности:

G=G1+G2·ПДК1/ПДК2+...+Gn·ПДК1/ПДКn,

где G1, G2...Gn - удельные массы токсичных газов, мг/г;

ПДК1, ПДК2...ПДКn - предельно допустимые концентрации вредных веществ для воздуха рабочей зоны, мг/м3.

2. Способ по п.1, отличающийся тем, что удельные массы токсичных газов однонаправленного действия приводят к удельной массе оксида углерода и при значениях приведенной удельной массы до 40 мг/г материалы относят к группе токсичности - малоопасные, при значениях от 40 до 120 мг/г - умеренно опасные, при значениях от 120 до 360 мг/г - высокоопасные и при значениях более 360 мг/г - чрезвычайно опасные.



 

Похожие патенты:

Изобретение относится к измерительной технике. .

Изобретение относится к области измерительной техники, а конкретнее к области измерений удельной теплоты сгорания калорийности горючих газов и паров. .

Изобретение относится к устройствам для изучения фазового поведения углеводородов и может быть использовано в нефтяной и газовой промышленности для исследовательских целей при установлении основных параметров глубинных и рекомбинированных проб пластовых нефтей и газоконденсатных систем, приведенных к термобарическим условиям их залегания.

Изобретение относится к теплофизическим измерениям и может быть использовано для прецизионных измерений теплоты сгорания газообразных видов топлива. .

Изобретение относится к физической химии и может быть использовано для анализа природных горючих газов, для определения их теплот сгорания. .

Изобретение относится к химмотологии горючего и может быть использовано для оценки энергоемкости топливных смесей в процессе подбора состава горючих на стадии их разработки.

Изобретение относится к области анализа газовых сред

Заявляемое изобретение относится к области контроля физико-химических характеристик природного газа и может быть использовано для экспресс-определения теплоты сгорания природного газа. Заявленный способ включает определение концентрации диоксида углерода в пробе газа. При этом дополнительно определяют скорость ультразвука в пробе газа, давление, влажность и температуру пробы газа. После этого производят корректировку результатов измерений скорости ультразвука по результатам измерения давления, влажности и температуры пробы газа. Затем определяют теплоту сгорания пробы газа с помощью блока обработки, содержащего искусственную нейронную сеть, выполненную с возможностью определения значения теплоты сгорания природного газа в условных единицах по значению концентрации диоксида углерода, и скорректированному как указано выше значению скорости ультразвука. Устройство содержит измерительную камеру (2), в которой размещены датчик концентрации диоксида углерода (3), датчик давления (6), датчик влажности (7), датчик температуры (8) и датчик скорости ультразвука (9). При этом вышеупомянутые датчики соединены с блоком обработки (4). Технический результат - повышение точности получаемого результата и возможность непрерывного измерения теплоты сгорания природного газа. 2 н. и 8 з.п. ф-лы, 1 ил.

Изобретение относится к области аналитической техники и может быть использовано для автоматического контроля теплоценности газообразных топлив. Автоматический анализатор теплоценности газообразных топлив содержит камеру, в днище которой установлена горелка для формирования пламени во внутренний полости камеры, буферную колонку, выход которой через тройник соединен с входом горелки и трубопроводом подачи водорода в горелку, автоматический дозатор с двумя входными штуцерами, соединенными с трубопроводом анализируемого газа и трубопроводом газа-носителя, термопару, расположенную над горелкой и подключенную последовательно к нормирующему преобразователю и устройству обработки и отображения информации. В анализаторе по ходу движения газа-носителя за автоматическим дозатором и перед буферной колонкой дополнительно установлены соответственно вспомогательная колонка и турбулентный дроссель. Технический результат - повышение достоверности и точности получаемых данных. 2 ил.

Изобретение относится к теплофизическим измерениям, в частности к способам определения энергии сгорания газообразных и жидких топлив, преимущественно реактивных топлив, и может быть использовано в области научных исследований при разработке новых композиций топлив и перспективных высокоскоростных двигателей. Сущность изобретения заключается в определении энергии сгорания топлив с использованием лабораторной установки перепускного типа при этом учитывается количество и состав продуктов сгорания - коэффициент адиабаты k, образовавшихся при сгорании в условиях, приближенных к условиям эксплуатации двигателя, масса поступившего топлива mгр в реакционную камеру, которая напрямую зависит от взятой массы mг исследуемого топлива, и прирост давления в реакционной камере при сгорании ТВС. Технический результат - повышение достоверности полученных результатов за счет приближения условий испытаний к условиям эксплуатации воздушно-реактивного двигателя на ТВС заданного состава. 2 ил.

Изобретение относится к способу измерения концентрации горючих газов и паров в воздухе, основанному на использовании термокаталитических сенсоров пелисторного типа, может использоваться в газоаналитической аппаратуре на предприятиях горнодобывающей, газовой, нефтяной, нефтеперерабатывающей, химической и других отраслях промышленности. Способ измерения концентраций горючих газов и паров в воздухе термокаталитическим сенсором диффузионного типа включает циклический режим работы сенсора с двухступенчатым импульсным питанием с заданными амплитудами напряжения, длительностью импульсов напряжения и паузами между ними. При этом первую ступень двухступенчатого импульса напряжения формируют путем кратковременной подачи напряжения на сенсор, в 2-2,5 раза превышающего номинальное рабочее напряжение сенсора, и длительностью, ограниченной моментом достижения сенсором температуры, на 15-20% превышающей ее номинальное рабочее значение. Измерение концентраций горючих газов производят в период переходного процесса охлаждения сенсора и выполняют путем измерения разницы выходных сигналов напряжений в двух строго фиксированных по времени точках в начале и конце переходного процесса охлаждения. Технический результат заключается в сокращении длительности и мощности нагревно-измерительного импульса тока при циклическом режиме работы термокаталитического сенсора, что снижает время контакта с реагирующими веществами и способствует повышению стойкости каталитически активной поверхности к отравлению каталитическими «ядами» и снижению блокирования этой поверхности отложениями кокса-углерода, образующегося в процессе окисления углеводородов и серосодержащих горючих составляющих. 1 з. п. ф-лы, 4 ил.
Наверх