Способ виброизоляции

Изобретение относится к машиностроению и может быть использовано для защиты технологического оборудования от воздействия вибрации. При виброизоляции объектов с переменной массой, например ткацких станков, посредством упругих элементов осуществляется демпфирование во всем диапазоне амлитудно-частотной характеристики путем разделения поверхностей трения фрикционной втулки на внутреннюю и наружную поверхности с возможностью регулирования коэффициента трения посредством регулировочных винтов, связанных с исполнительным серводвигателем, например червячного типа с самотормозящейся передачей. Сигнал на включение серводвигателя поступает от микропроцессора, управляющего работой демпфера сухого трения по заданной характеристике, и связанного с датчиком виброускорений, например пьезокристаллическим. Достигается повышение эффективности виброизоляции. 5 з.п. ф-лы, 3 ил.

 

Изобретение относится к машиностроению и может быть использовано для защиты технологического оборудования от воздействия вибрации.

Наиболее близким техническим решением к заявляемому объекту является способ виброизоляции для ткацких станков с переменной виброизолируемой массой, где осуществляют виброизоляцию посредством плоских рессор (Заявка RU №94008151, F16F 7/00 от 09.04.94).

Недостатком известного способа виброизоляции является сравнительно невысокая эффективность виброизоляции.

Техническим результатом является повышение эффективности виброизоляции.

Это достигается тем, что в способе виброизоляции объектов с переменной массой, заключающемся в том, что в системе виброизоляции объектов с переменной массой, например ткацких станков, осуществляют виброизоляцию посредством упругих элементов рессорного типа, имеющих внутреннее демпфирование, в систему дополнительно вводят демпфирование во всем диапазоне амлитудно-частотной характеристики путем разделения поверхностей трения фрикционной втулки на внутреннюю и наружную поверхности с возможностью регулирования коэффициента трения.

На фиг.1-2 представлены динамические модели системы, реализующей предложенный способ виброизоляции; на фиг.3 амплитудно-частотная характеристика (АЧХ) виброизолирующей системы, работающей по предложенному способу.

Предложенный способ виброизоляции осуществляют следующим образом.

Рассмотрим его на примере конструктивной реализации, представленной на фиг.1 и включающей в себя виброизолированную массу 1, размещенную на основании 2 посредством упругого элемента 3 демпфирующего элемента 4. Демпфер 4 сухого трения представлен в виде фрикционной втулки 6 с ограничительными упорами, внутренняя поверхность которой контактирует с поршнем 5, образуя пару трения с коэффициентом трения f1, а наружная поверхность втулки 6 контактирует с дополнительными фрикционными элементами, образуя пару трения с коэффициентом трения f2, который можно изменить посредством регулировочных винтов, связанных с исполнительным серводвигателем 9, например червячного типа с самотормозящейся передачей. Сигнал на включение серводвигателя 9 поступает от микропроцессора 8, управляющего работой демпфера сухого трения по заданной характеристике, и связанного с датчиком виброускорений 7, например пьезокристаллическим.

На фиг.3 изображены амплитудно-частотные характеристики виброизолирующей системы, работающей по предложенному способу. Кривая 1 характеризует систему с относительным коэффициентом демпфирования ν=0,05; кривая 2 - с коэффициентом ν=0,5 является оптимальной с точки зрения величины резонансного пика (TA(ω)=1,5). Однако в зарезонансной зоне АЧХ, начиная с частоты √2ω0, система, имеющая АЧХ с ν=0,05 более эффективная, чем с ν=0,5. Поэтому предложенным способом виброизоляции обеспечивают ступенчатую характеристику 3, которая на резонансе имеет свойства АЧХ системы с ν=0,5, а в зарезонансной зоне АЧХ - ν=0,05. Для этого осуществляют почастотное включение в работу демпфирующих элементов с поверхностями, имеющими различные по значению коэффициенты трения f1 и f2. В резонансном режиме подключают к работе следующую пару трения: «наружная поверхность втулки 7 - фрикционные элементы 8» с коэффициентом трения f2. Во всем остальном частотном диапазоне обеспечивают работу пары трения: «поршень 6 - внутренняя поверхность втулки 7» с коэффициентом трения f1. Полученная таким способом АЧХ (фиг.3, кривая 3) на резонансе обладает преимуществом демпфированных систем (ν=0,5) систем, а в зарезонансной зоне - преимуществом систем с небольшим коэффициентом относительного демпфирования (ν=0,05).

Устройство, реализующее предложенный способ виброизоляции, работает следующим образом. Во всем частотном диапазоне виброизолятор (фиг.2) осуществляет гашение колебаний посредством пружин 3, а демпфирование - за счет трения поршня 5 о внутреннюю поверхность втулки 6. При резонансе, когда амплитуда перемещений поршня возрастает, он начнет взаимодействовать с упорами на торцевой поверхности втулки 6, и демпфирование в этом случае будет осуществляться в основном за счет трения наружной поверхности втулки 6 о фрикционные элементы, числом не менее 3-х, которые обеспечивают больший коэффициент трения в этой паре, чем пара «поршень - внутренняя поверхность втулки». При резонансе сила инерции, равная произведению массы объекта на виброускорение, обычно превышает величину силы трения между поршнем 5 и втулкой 6, поэтому на резонансных частотах проскальзывание поршня будет препятствовать увеличению резонансных колебаний за счет введения в систему более сильного демпфирования с коэффициентом ν=0,5. После прохождения резонанса фрикционная втулка 6 останавливается и демпфирование в системе происходит с коэффициентом ν=0,05, что приводит к эффективному гашению колебаний во всем зарезонансном диапазоне частот.

Эта задача наиболее эффективно решается в варианте способа, представленного на фиг.2, когда между торцевыми поверхностями втулки 6 и корпуса вводят упругие элементы 7 и 8. При этом упругие элементы 7 и 8 настраивают на резонансную частоту виброизолятора, работающего на пружинах 3. В этом случае происходит более эффективное демпфирование за счет быстродействия эффекта перехода на более сильное демпфирование наружной поверхности втулки с фрикционными элементами, т.е. резонанс самой втулки 6 помогает системе переключиться на другой коэффициент демпфирования.

Таким образом, предложенный способ позволяет получить оптимальную с точки зрения переменной массы виброизолируемого объекта, амплитудно-частотную характеристику, которая на резонансе ведет себя как задемпфированная система, а в зарезонансной области приближается к системе с малым демпфированием, обеспечивая тем самым эффективную виброизоляцию во всем диапазоне частот.

1. Способ виброизоляции, заключающийся в том, что в системе виброизоляции объектов с переменной массой, например ткацких станков, осуществляют виброизоляцию посредством упругих элементов, имеющих внутреннее демпфирование, отличающийся тем, что в систему дополнительно вводят демпфирование во всем диапазоне амплитудно-частотной характеристики путем разделения поверхностей трения фрикционной втулки на внутреннюю и наружную поверхности с возможностью регулирования коэффициента трения посредством регулировочных винтов, связанных с исполнительным серводвигателем, например, червячного типа с самотормозящейся передачей, а сигнал на включение серводвигателя поступает от микропроцессора, управляющего работой демпфера сухого трения по заданной характеристике и связанного с датчиком виброускорений, например пьезокристаллическим.

2. Способ виброизоляции по п.1, отличающийся тем, что поверхности трения разделяют посредством введения ограничительных упоров на внутреннюю поверхность втулки и дополнительных фрикционных элементов, расположенных на корпусе и взаимодействующих с наружной поверхностью втулки.

3. Способ виброизоляции по п.1, отличающийся тем, что коэффициент трения внутренней поверхности втулки с подпружиненным поршнем вместе выполняют меньшим, чем коэффициент трения наружной поверхности втулки с дополнительными фрикционными элементами.

4. Способ виброизоляции по п.1, отличающийся тем, что вводят регулировку коэффициента трения наружной поверхности втулки с дополнительными фрикционными элементами посредством изменения усилия их прижима к поверхности втулки.

5. Способ виброизоляции по п.1, отличающийся тем, что между торцевыми поверхностями втулки и корпуса вводят упругие элементы.

6. Способ виброизоляции по п.1, отличающийся тем, что вводят регулировку коэффициента трения наружной поверхности втулки с дополнительными фрикционными элементами в зависимости от статического перемещения виброизолируемого объекта.



 

Похожие патенты:

Изобретение относится к машиностроению и может быть использовано для защиты технологического оборудования от воздействия вибрации. .

Изобретение относится к машиностроению и может быть использовано для защиты технологического оборудования от воздействия вибрации. .

Изобретение относится к области машиностроения. .

Изобретение относится к машиностроению и может быть использовано для защиты технологического оборудования, аппаратуры и приборов, а также человека-оператора от воздействия вибрации.

Изобретение относится к машиностроению и может быть использовано для защиты технологического оборудования, аппаратуры и приборов, а также человека-оператора от воздействия вибрационных и ударных нагрузок.

Изобретение относится к машиностроению и может быть использовано для защиты технологического оборудования, аппаратуры и приборов, а также человека-оператора от воздействия вибрационных и ударных нагрузок.

Изобретение относится к машиностроению и может быть использовано для защиты технологического оборудования, аппаратуры и приборов, а также человека-оператора от воздействия вибрационных и ударных нагрузок.

Изобретение относится к машиностроению и может быть использовано для защиты технологического оборудования, аппаратуры и приборов, а также человека-оператора от воздействия вибрации.

Изобретение относится к машиностроению и может быть использовано для защиты технологического оборудования от воздействия вибраций. .

Изобретение относится к машиностроению и может быть использовано для виброизоляции технологического оборудования, в том числе ткацких станков. .

Изобретение относится к области машиностроения, в частности к устройствам защиты объектов от действия вибрационных и ударных нагрузок

Изобретение относится к области фрикционных поглощающих аппаратов, предназначенных для автосцепок железнодорожных транспортных средств

Изобретение относится к области машиностроения, в частности к устройствам защиты объектов от действия вибрационных и ударных нагрузок

Изобретение относится к машиностроению, а именно к средствам для гашения механических колебаний различного рода объектов, возникающих в транспортных средствах, различного рода машинах и аппаратах

Изобретение относится к устройствам виброзащитной техники

Изобретение относится к амортизатору, используемому, в частности, в стиральных машинах с центрифугой

Изобретение относится к железнодорожному транспорту

Изобретение относится к области техники, где применяется гашение механических колебаний, в частности предназначено для использования в подвесках транспортных средств
Наверх