Источник питания на основе топливных элементов

Изобретение относится к области электротехники, в частности к источникам питания (ИП) на основе топливных элементов (ТЭ) с мембранно-электродной сборкой (МЭС). Согласно изобретению ИП содержит ТЭ, DC/DC преобразователь напряжения и аккумулятор, при этом в качестве ТЭ используется ТЭ с МЭС, которая выполнена на основе монолитной трехслойной градиентно-пористой структуры, центральный слой которой выполнен из пористого непроводящего материала, поры которого заполнены ионопроводящим электролитом, а наружные газодиффузионные слои МЭС выполнены из пористого электропроводного материала, поры которого в зоне контакта с центральным слоем содержат катализатор. Центральный слой МЭС имеет толщину 50÷150 мкм, пористость 60÷90% и средний размер пор 1÷10 мкм, наружные газодиффузионные слои имеют толщину 150-300 мкм, пористость 50÷60% и средний размер пор 10÷50 мкм, при этом в наружных газодиффузионных слоях размер пор уменьшается в направлении к центральному слою МЭС. В качестве ионопроводящего электролита в МЭС может использоваться протонпроводящий или анионпроводящий электролит. Центральный пористый слой МЭС может быть выполнен из керамики и/или стекла. Наружные газодиффузионные слои МЭС могут быть выполнены из углеродного материала или металла. В качестве аккумулятора могут использоваться литий-ионный или литий-полимерный аккумулятор. Техническим результатом изобретения является повышение электрических характеристик. 6 з.п. ф-лы, 1 ил.

 

Изобретение относится к области электротехники, в частности к источникам питания (ИП) на основе топливных элементов (ТЭ) с мембранно-электродной сборкой (МЭС).

Из известных ИП наиболее близким по совокупности существенных признаков и достигаемому техническому результату является ИП, содержащий ТЭ с МЭС, DC/DC преобразователь напряжения и аккумулятор (патент США 2005/0008903 А1, кл. Н01М 16/00, 2005).

Недостатком указанного известного ИП на основе ТЭ с МЭС являются невысокие электрические характеристики из-за повышенного внутреннего омического сопротивления ТЭ, которое связано с наличием межграничных контактных омических сопротивлений между составляющими МЭС и ТЭ.

Задачей изобретения является создание ИП на основе ТЭ с МЭС, обладающего повышенными электрическими характеристиками.

Указанный технический результат достигается тем, что в ИП на основе ТЭ с МЭС используется ТЭ с МЭС, выполненной на основе монолитной трехслойной градиентно-пористой структуры, при этом центральный слой структуры выполнен из пористого непроводящего материала, поры которого заполнены ионопроводящим электролитом, а наружные газодиффузионные слои структуры выполнены из пористого электропроводного материала, поры которого в зоне контакта с центральным слоем содержат катализатор. Использование ТЭ с градиентно-пористой структурой в качестве МЭС позволяет существенно повысить электрические характеристики ИП за счет снижения внутреннего сопротивления ТЭ.

Целесообразно, чтобы центральный слой МЭС ТЭ имел толщину 50÷150 мкм, пористость 60÷90% и средний размер пор 1÷10 мкм, наружные газодиффузионные слои имели толщину 150÷300 мкм, пористость 50÷60% и средний размер пор 10÷50 мкм, при этом размер пор в наружных газодиффузионных слоях уменьшается в направлении к центральному слою МЭС ТЭ.

Указанные параметры составляющих МЭС ТЭ являются оптимальными. При толщине центрального слоя менее 50 мкм снижается механическая прочность МЭС, повышается вероятность короткого замыкания электродов, проникновения рабочих газов через электролит в газовые камеры ТЭ и их смешения с возможность возгорания. При толщине слоя более 150 мкм увеличивается внутреннее омическое сопротивление МЭС и ТЭ в целом, что отрицательно сказывается на его электрических характеристиках ИП. При пористости центрального слоя МЭС менее 60% повышается внутреннее омическое сопротивление из-за уменьшения доли электролита в слое, при пористости более 90% механическая прочность МЭС становится недостаточной. При толщине наружных газодиффузионных слоев МЭС менее 150 мкм снижается механическая прочность МЭС, увеличение толщины наружных слоев МЭС более 300 мкм нецелесообразно, поскольку возрастает масса МЭС и ТЭ в целом и снижаются удельные электрические характеристики ИП. Пористость и размер пор наружных газодиффузионных слоев МЭС выбирают исходя из необходимости свободного доступа рабочих газов к каталитическим слоям электродов. Убывающий размер пор наружных газодиффузионных слоев в направлении центрального слоя выполнен с целью увеличения площади активной поверхности в зоне каталитических слоев МЭС ТЭ.

Целесообразно, чтобы в качестве ионопроводящего электролита в МЭС ТЭ использовался протонпроводящий или анионпроводящий электролит. Использование того или иного электролита в ТЭ расширяет возможные области использования ТЭ, а также типы используемых в ТЭ топливных реагентов.

Целесообразно, чтобы центральный пористый слой МЭС ТЭ был выполнен из керамики и/или стекла. Указанные материалы являются непроводящими электрический ток, что исключает возможность короткого замыкания электродов, стойки при рабочих условиях ТЭ, широко доступны и имеют невысокую стоимость.

Целесообразно, чтобы наружные газодиффузионные слои в МЭС ТЭ были выполнены из углеродного материала или металла. Указанные материалы хорошо проводят электрический ток, что снижает внутреннее омическое сопротивление ТЭ, широко доступны и химически стойки при рабочих условиях ТЭ.

Целесообразно, чтобы ионопроводящий электролит в МЭС ТЭ был выполнен из органического или неорганического материала. Это позволяет существенно расширить круг электролитов, пригодных для использования в ТЭ, что упрощает выбор используемых в ТЭ конструкционных материалов.

Целесообразно, чтобы в качестве аккумулятора ИП использовался литий-ионный или литий-полимерный аккумулятор. Указанные аккумуляторы обладают самыми высокими удельными электрическими характеристиками по сравнению с другими типами аккумуляторов. Это позволяет повысить электрические характеристики ИП.

Проведенный анализ уровня техники показал, что заявленная совокупность существенных признаков, изложенная в формуле изобретения, неизвестна. Это позволяет сделать вывод о ее соответствии критерию «новизна».

Для проверки соответствия заявленного изобретения критерию «изобретательский уровень» проведен дополнительный поиск известных технических решений с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного технического решения. Установлено, что заявленное техническое решение не следует явным образом из известного уровня техники. Следовательно, заявленное изобретение соответствует критерию «изобретательский уровень». Сущность изобретения поясняется примером практической реализации.

На чертеже представлена функциональная схема ИП.

ИП включает ТЭ с МЭС 1, DC/DC преобразователь напряжения 2, вход которого подключен к выходу ТЭ, аккумулятор 3, подключенный к выходу DC/DC преобразователя напряжения и потребитель энергии 4, подключенный к аккумулятору 3. ИП работает следующим образом. В ТЭ 1 химическая энергия водорода и кислорода преобразуется в электрическую энергию, которая подается на вход DC/DC преобразователя напряжения 2. DC/DC преобразователь 2 преобразует выходное напряжение ТЭ 1 в напряжение заданной величины и обеспечивает подзаряд аккумулятора 3, который подключен к потребителю энергии 4. Аккумулятор 3 обеспечивает питание потребителя 4 и накопление энергии в период малой нагрузки и питание потребителя 4 в период пиковой нагрузки.

На основании приведенных функциональной схемы и описания работы ИП можно сделать вывод, что заявленный ИП может быть реализован на практике с достижением заявленного технического результата, т.е. он соответствует критерию промышленная применимость.

1. Источник питания (ИП), содержащий топливный элемент (ТЭ), DC/DC преобразователь напряжения и аккумулятор, отличающийся тем, что в качестве ТЭ используется ТЭ с мембранно-электродной сборкой (МЭС), которая выполнена на основе монолитной трехслойной градиентно-пористой структуры, центральный слой которой выполнен из пористого непроводящего материала, поры которого заполнены ионопроводящим электролитом, а наружные газодиффузионные слои МЭС выполнены из пористого электропроводного материала, поры которого в зоне контакта с центральным слоем содержат катализатор.

2. ИП по п.1, отличающийся тем, что центральный слой МЭС имеет толщину 50÷150 мкм, пористость 60÷90% и средний размер пор 1÷10 мкм, наружные газодиффузионные слои имеют толщину 150÷300 мкм, пористость 50÷60% и средний размер пор 10÷50 мкм, при этом в наружных газодиффузионных слоях размер пор уменьшается в направлении к центральному слою МЭС.

3. ИП по п.1, отличающийся тем, что в качестве ионопроводящего электролита в МЭС используется протонпроводящий электролит.

4. ИП по п.1, отличающийся тем, что в качестве ионопроводящего электролита в МЭС используется анионпроводящий электролит.

5. ИП по п.1, отличающийся тем, что центральный пористый слой МЭС выполнен из керамики и/или стекла.

6. ИП по п.1, отличающийся тем, что наружные газодиффузионные слои МЭС выполнены из углеродного материала или металла.

7. ИП по п.1, отличающийся тем, что в качестве аккумулятора используется литий-ионный или литий-полимерный аккумулятор.



 

Похожие патенты:

Изобретение относится к области электротехники, в частности к энергетическим системам, в которых топливо преобразуется в электроэнергию. .

Изобретение относится к области электротехники, в частности к топливным элементам (ТЭ) с градиентно-пористой структурой в качестве мембранно-электродной сборки (МЭС).

Изобретение относится к области электротехники, в частности к мембранно-электродным (МЭС) сборкам для топливных элементов (ТЭ). .

Изобретение относится к области электротехники, в частности к изготовлению топливных элементов, в которых требуется регулирование уровня гидротации мембраны из полимерного электролита во время работы.

Изобретение относится к области электротехники, в частности к топливным элементам, используемым в энергоустановках различного назначения, например на транспортных средствах, или в качестве аварийного источника энергоснабжения.

Изобретение относится к топливным элементам с твердой протонопроводящей мембраной. .
Изобретение относится к источникам питания постоянного тока, точнее к энергоустановкам (ЭУ) на топливных элементах (ТЭ), работающим на кислороде, водороде и проточном щелочном электролите.

Изобретение относится к изготовлению энергоустановок на базе топливных элементов с неразделенными газовыми пространствами. .

Изобретение относится к области электротехники, в частности к системе, вырабатывающей электрический ток, которая содержит топливный элемент, работающий при температуре около 250°С, выбранный из расплавленного карбоната или из твердого оксида.

Изобретение относится к области электротехники, в частности к особенности выполнения электрохимическиих генераторов (ЭХГ) на основе топливных элементов (ТЭ) со щелочным электролитом, и может быть использовано при производстве указанных генераторов.

Изобретение относится к энергетическим установкам подводного аппарата с электрохимическим генератором (ЭХГ). .
Изобретение относится к получению водорода из воды при эксплуатации атомных электростанций с помощью термоэлектрохимических генераторов. .

Изобретение относится к области автономных систем энергопитания (АСЭП) отдельных объектов, удаленных от линии электропередачи. .

Изобретение относится к области электротехники, в частности к батареям топливных элементов (БТЭ), используемым в энергоустановках различного назначения, например на транспортных средствах, или в качестве аварийного источника энергоснабжения.

Изобретение относится к области электротехники, в частности к топливным элементам (ТЭ), используемым в энергоустановках различного назначения, например на транспортных средствах.

Реактор // 2156162
Изобретение относится к машинам и аппаратам, работающим под воздействием жидких и газообразных агрессивных веществ при высоких параметрах давления и температуры. .
Изобретение относится к области электротехники и может быть использовано в устройствах для генерации электрической энергии. .

Изобретение относится к машиностроению, в частности к способам работы энергетических установок, предназначенных для выработки электрической энергии, и может быть применено для энергоснабжения объектов, функционирующих без связи с атмосферой.

Изобретение относится к области электротехники и может быть использовано при производстве аккумуляторных батарей (АБ) транспортного назначения, преимущественно стартерных АБ.

Изобретение относится к источникам постоянного тока, а именно к системам энергопитания постоянного тока, работающим на водороде и кислороде со щелочным или кислым электролитами.

Изобретение относится к энергоустановкам (ЭУ), предназначенным для хранения электроэнергии
Наверх