Электромагнитный фильтр для разделения электронных пучков

Изобретение относится к растровой электронной микроскопии и, в частности, к электромагнитным фильтрам, предназначенным для пространственного разделения пучков первичных и вторичных электронов. Фильтр содержит восемь секторных электродов, расположенных внутри цилиндра, выполненного из диэлектрического и немагнитного материала. Электроды изготовлены из ферромагнитного материала в виде восьми цилиндрических сегментов с углами раствора 30 и 60 градусов и одновременно выполняют функцию магнитных полюсов. На внешней стороне цилиндра расположены четыре магнитных полюса с углом раствора 60 и 120 градусов. Круглые диафрагмы с центральными отверстиями, расположенные на торцах фильтра, изготовлены из проводящего ферромагнитного материала, причем одна из диафрагм имеет четыре или более симметрично расположенных отверстий для вывода пучка вторичных электронов. Технический результат: отклонение пучка вторичных электронов более чем на 20 градусов при отсутствии отклонения оси пучка первичных электронов на всей длине фильтра и минимальности аберраций пучка первичных электронов. 1 з.п. ф-лы, 2 ил.

 

Заявляемый электромагнитный фильтр предназначен для использования в колонне низковольтного растрового электронного микроскопа (НРЭМ) для пространственного разделения пучков первичных и вторичных электронов с целью последующей регистрации вторичных электронов. В НРЭМ с глубоким торможением первичных электронов у объекта пучок вторичных электронов захватывается магнитным и электрическим полями объективной линзы и распространяется соосно пучку вторичных электронов практически с той же энергией, но в противоположном направлении. Поэтому для регистрации вторичных электронов требуется предварительное пространственное разделение пучков, не вносящее при этом в первичный электронный пучок значительных аберраций, ухудшающих разрешение микроскопа.

Принцип работы фильтра состоит в одновременном воздействии на оба электронных пучка, распространяющихся в противоположных направлениях, отклоняющих электрических и магнитных сил, полностью взаимно компенсирующих друг друга для первичных электронов и складывающихся для вторичных электронов. Известен аналог и прототип: фильтр Вина описанный в статье [М. Kienle, E. Plies, 'An off-axis multichannel analyzer for secondary electrons' // Nuclear Instruments and Methods in Physics Research, Sec A, V 519, 1-2 Feb 2004, p.325]. Описанное устройство содержит восемь электродов и две магнитные катушки без сердечников, формирующие скрещенные электрическое и магнитное поля, вектора которых ортогональны друг другу и осям электронных пучков. Недостатком устройства является невозможность обеспечения точной пропорциональности напряженностей электрического и магнитного полей на оси первичного пучка и, следовательно, нулевого отклонения оси первичного пучка, что приводит к появлению аберраций первичного пучка.

Электромагнитный фильтр решает задачу отклонения пучка вторичных электронов на угол более 20 градусов при отсутствии отклонения оси пучка первичных электронов на всей длине фильтра и минимальности аберраций пучка первичных электронов. Это позволяет детектировать вторичные электроны при помощи любого известного детектора, не ухудшая при этом разрешение НРЭМ.

Конструкция электромагнитного фильтра поясняется фиг.1 и 2. Электроды (1) изготовлены из ферромагнитного материала и одновременно выполняют функцию магнитных полюсов, формируя как электрическое, так и магнитное поля. Электроды выполнены в виде восьми цилиндрических сегментов с углами раствора 30 и 60 градусов, за вычетом толщины диэлектрика или вакуумного промежутка между ними. Электроды расположены внутри цилиндра из диэлектрического и немагнитного материала (2), на внешней стороне которого расположены четыре магнитных полюса (3) с углом раствора 60 и 120 градусов. Цилиндр из изолирующего немагнитного материала может служить частью вакуумно-плотного лучепровода. Магнитное поле создается обмотками (6). Подключение источника напряжения и направления токов в обмотках поясняются фиг.1.

На торцах фильтра располагаются две круглые диафрагмы (4) с центральными отверстиями, изготовленные из проводящего ферромагнитного материала. Одна диафрагма имеет четыре или более симметрично расположенных отверстий, одно из которых предназначено для вывода отклоненного пучка вторичных электронов (9).

Электромагнитный фильтр располагается перед объективной линзой (7) по ходу пучка первичных электронов. Геометрический центр фильтра может совпадать с одной из промежуточных точек фокусировки пучка первичных электронов (8), оптически сопряженной с точкой формирования электронного зонда на объекте (5). Как показано ниже, это приводит к уменьшению влияния хроматической аберрации фильтра.

Для отклонения пучка вторичных электронов на угол, превышающий 20 градусов, может быть применена дополнительная отклоняющая система (10), поле которой не проникает на оптическую ось устройства.

Принцип действия устройства состоит в отклонении пучка вторичных электронов взаимно перпендикулярными электрическим и магнитным полями. Пусть оси х, у, z образуют правую декартову систему координат, причем первичные электроны распространяются вдоль оси Z в положительном направлении, а вторичные электроны - в отрицательном.

Напряженность полей вблизи оси пучка первичных электронов можно представить в виде разложений [В.Глазер. Основы электронной оптики. Гос. издательство технико-теоретической литературы. М., 1957]:

в которых оставлены члены до второго порядка малости относительно поперечных координат х и у. Функции E0, B0, Е2 и В2 определяются потенциалами электродов, токами магнитных катушек и геометрическими размерами устройства. Сила Лоренца, действующая на первичный электрон с энергией ε0 и движущийся строго вдоль оси Z, равна При выполнении условия фильтра Вина эта сила обращается в нуль, что означает отсутствие отклонения пучка первичных электронов. Для вторичных же электронов магнитная и электрическая составляющие силы Лоренца складываются по величине, обеспечивая отклонение вторичных электронов от оси.

Для минимизации влияния устройства на пучок первичных электронов, имеющий конечную ширину и энергетических разброс, необходимо как можно более точное выполнение условия взаимной компенсации электрической и магнитной сил вдоль всей оси пучка и на некотором расстоянии от нее. Конструкция заявляемого устройства обеспечивает равенство функций E0 и B0 с точностью до коэффициента при любом значении z (линейную зависимость) и тождественное равенство нулю функций Е2 и В2, что обеспечивает компенсацию электрической и магнитной сил с точностью до второго порядка включительно по осям X и У на всей протяженности оси z, за исключением лишь краев устройства, прилегающих к диафрагмам.

Устройства типа фильтра Вина неизбежно обладают значительной хроматической аберрацией. При отклонении энергии первичного электрона от номинальной ε=ε0+Δε результирующая сила Лоренца, действующая на электрон, составляет . Это приводит к отклонению электронов на угол, пропорциональный Δε, причем продолжения траекторий отклоненных траекторий пересекаются в центре устройства. Таким образом, если фильтр расположен на оптической оси системы так, что его центр совпадает с одним из промежуточных фокусов, оптически сопряженных с точкой формирования электронного зонда, то хроматическая аберрация фильтра не приводит непосредственно к увеличению размера электронного зонда, а вызывает лишь увеличение апертурного угла раскрытия электронного луча.

Заявляемое устройство позволяет отклонять пучок вторичных электронов от оптической оси прибора в сторону детектора, не внося при этом значительных искажений пучка первичных электронов и, следовательно, не приводя к снижению разрешения электронного микроскопа.

1. Электромагнитный фильтр для пространственного разделения пучков первичных и вторичных электронов в растровом электронном микроскопе, содержащий восемь электродов, ограничивающие диафрагмы и магнитную обмотку, отличающийся тем, что электроды и диафрагмы выполнены из проводящего ферромагнитного материала, электроды имеют форму цилиндрических секторов с углом раствора 30 и 60° и помещены внутрь диэлектрического немагнитного цилиндра, с внешней стороны которого располагаются полюсные наконечники магнитной системы.

2. Устройство по п.1, отличающееся тем, что его геометрический центр совпадает с одной из промежуточных точек фокусировки пучка первичных электронов на оптической оси микроскопа.



 

Похожие патенты:

Изобретение относится к устройствам механического перемещения объекта вдоль одной координаты. .

Изобретение относится к сканирующей туннельной спектроскопии и может быть использовано для получения топографии проводящих поверхностей, а также изучения физико-технологических свойств твердых тел.

Изобретение относится к области машиностроения, а более конкретно к способам определения нанорельефа поверхности. .

Изобретение относится к электронике, а более конкретно к способам получения ионного луча. .

Изобретение относится к области научного приборостроения и может быть использовано для получения топографии проводящих поверхностей, а также для изучения физико-технологических свойств твердых тел.

Изобретение относится к области электронных приборов, в частности к эмиссионным видеоустройствам. .

Изобретение относится к области электроники, а именно к способам получения электронного пучка. .

Изобретение относится к области электронной микроскопии. .

Изобретение относится к электромагнитам для отклонения и разделения пучка заряженных частиц и может быть использовано при вводе/выводе их в ускоритель. .

Изобретение относится к электронно-оптическим устройствам. Технический результат - расширение области применения фокусируще-отклоняющей системы для реализации различных технологических процессов обработки материалов электронным пучком. Система содержит магнитную фокусирующую линзу [1], состоящую из обмотки возбуждения [2], магнитопровода [3], колец [4] из магнитного аморфного сплава из тонкой ленты с индукцией насыщения не хуже индукции насыщения материала магнитопровода [3] и немагнитных промежутков [5], двухполюсную отклоняющую систему тороидального типа [6], электронно-оптическую ось пушки [7], лучепровод [8], плоскость [9] кроссовера электронного пучка, плоскость [10] фокусировки электронного пучка. Электронный пучок, сформированный электронной пушкой и системой формирования, поступает по лучепроводу [8] в фокусирующе-отклоняющую систему вдоль электронно-оптической оси [7]. При подаче тока на обмотку возбуждения [2] магнитная фокусирующая линза [1] переносит кроссовер электронного пучка в плоскости [9], расположенного в районе ускоряющего промежутка, в плоскость фокусировки [10] на обрабатываемом объекте. Отклоняющая система [6] тороидального типа при подаче тока в ее обмотки отклоняет электронный пучок в пределах поля обработки в соответствии с заданной программой, при этом центр отклонения расположен в центре магнитной линзы. Кольца [4] из магнитомягкого материала экранируют магнитное поле внешних по отношению к оси витков обмоток отклоняющей системы [6] и увеличивают величину индукции отклоняющего поля на оси системы, создаваемого внутренними витками обмотки. При этом чередующиеся кольца [4] из магнитомягкого материала и промежутки [5] создают концентрацию магнитного поля фокусирующей системы на электронно-оптической оси пушки [7]. 5 ил., 2 табл.

Изобретение относится к исследованию микрорельефа как проводящих, так и непроводящих поверхностей образцов твердых тел

Изобретение относится к области нанотехнологий, в частности к измерению температуры одной проводящей (металлической или полупроводниковой) наночастицы с помощью сканирующего туннельного микроскопа, работающего в режиме наноконтакта и использование эффекта Зеебека в наноразмерной контактной области

Изобретение относится к растровой электронной микроскопии и может быть использовано для неразрушающего послойного тестирования образцов, в частности изделий микро- и наноэлектроники

Изобретение относится к области приборостроения

Изобретение относится к измерительной технике

Изобретение относится к области растровой электронной микроскопии. В изобретении используется принцип фотограмметрической обработки изображений, полученных в растровом электронном микроскопе при различных углах наклона исследуемого объекта. Сущность изобретения: исследуемая кремниевая структура предварительно подвергается плазменной обработке при помощи высокочастотного разряда пониженного давления, причем мощность разряда и продолжительность обработки устанавливаются достаточными для возникновения и визуализации в растровом электронном микроскопе морфологических особенностей нанометрового масштаба на поверхности исследуемого объекта. Технический результат - повышение точности результатов трехмерной реконструкции. 1 ил.

Изобретение относится к точной механике и может быть использовано для сближения зонда и образца в сканирующей зондовой микроскопии. Сущность изобретения заключается в том, что в устройстве механического перемещения для сканирующего зондового микроскопа, содержащем основание 1, СЗМ головку 2, оснащенную первой опорой 3, второй опорой 4, третьей опорой 5, при этом первая опора 3 сопряжена с основанием 1 и снабжена первым приводом 6, установленным на СЗМ головке 2, а вторая опора 4 и третья опора 5 также сопряжены с основанием, вторая опора 4 снабжена вторым приводом 7, установленным на СЗМ головке 2, и третья опора 5 снабжена третьим приводом 8, установленным на СЗМ головке 2. Технический результат предложенного решения заключается в повышении точности измерений. 5 з.п. ф-лы, 2 ил.
Наверх