Индуктор однородного магнитного поля

Изобретение относится к области электромеханики и может быть использовано в электромеханических и электротехнических устройствах, для работы которых необходимо существование в воздушном зазоре однородного магнитного поля. Предлагаемая конструкция индуктора состоит из отдельных предварительно намагниченных и разрезанных цилиндрических постоянных магнитов, установленных в немагнитную обойму, раскрой предварительно намагниченных цилиндров осуществляется по двум продольным плоскостям, угол между которыми определяется количеством сегментов постоянных магнитов в индукторе, а угол между плоскостью сечения и направлением намагничивания цилиндрического магнита зависит от места расположения данного магнитного сегмента по расточке индуктора. При этом для получения однородного магнитного поля внутри индуктора необходимо, чтобы направление намагничивания каждого постоянного магнита в поперечном сечении индуктора определялось в соответствии с формулой αk=(4π/N)k, где k=0, 1, 2, 3, 4,...N - порядковый номер магнита сегмента по расточке кольцевого индуктора. Технический результат - повышение технологичности и качества однородности магнитного поля. 4 ил.

 

Известны источники однородного магнитного поля, описанные в [К. Halbach, "Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt Material", Nuclear Instruments and Methods, 169, pp.1-10, 1980], особенность которых состоит в том, что в кольцевом постоянном магните сформируется четное число сегментов больше четырех. Направление намагничивания последовательно образованных сегментов по расточке кольцевого магнита определяется в соответствии с формулой

где k=0, 1, 2, 3, 4...N - порядковый номер сегмента. Благодаря определенному порядку направления намагничивания последовательно сформированных сегментов внутри индуктора формируется однородное магнитное поле. Величина индукции и качество однородного магнитного поля зависит от материала магнита, объема кольцевого постоянного магнита и количества сформированных сегментов по расточке кольцевого магнита.

В качестве прототипа индуктора выберем источник однородного магнитного поля, описанный в [В.Т. Merritt, R.F. Post, G.R. Dreifuerst, D.A. Bender. Halbach Array Motor/Generators - A Novel Generalized Electric machine. Halbach Festschrift Symposium Berkeley, CA. February 3. 1995. UCRL-JC-119050. Стр.13. Figure 1, 2]. Конструктивно индуктор представляет кольцевой постоянный магнит, в котором сформировано четное число сегментов, направление намагничивания которых выполнено в соответствие с (1). Достоинством прототипа является простая монолитная конструктивная схема, реализующая рассматриваемый принцип формирования однородного магнитного поля внутри замкнутой кольцевой магнитной системы. Недостатками прототипа являются низкий уровень технологичности и сложность формирования отдельных сегментов постоянных магнитов, обладающих равенством геометрических и магнитных характеристик, при различных направлениях намагничивания внутри кольцевого постоянного магнита. Кроме того, внешний диаметр индуктора ограничен технологическими возможностями изготовления монолитного постоянного магнита. Указанные недостатки увеличивают неоднородность магнитного поля внутри индуктора, повышают стоимость изготовления изделия и ограничивают возможности использования источников однородного магнитного поля в электромеханических устройствах.

Задачей изобретения является повышение технологичности и качества однородности магнитного поля индуктора, а также расширение применения источников однородного магнитного поля в электромеханических устройствах, обладающих линейными регулировочными характеристиками.

Поставленная задача в предлагаемом индукторе решена тем, что индуктор состоит из отдельных предварительно намагниченных и раскроенных цилиндрических постоянных магнитов из редкоземельных элементов, установленных в немагнитную обойму. При этом раскрой предварительно намагниченных цилиндров осуществляется по двум продольным плоскостям, угол между которыми определяется количеством сегментов постоянных магнитов в индукторе, а угол между плоскостью сечения и направлением намагничивания цилиндрического магнита зависит от места расположения данного магнитного сегмента по расточке индуктора.

Карта раскроя отдельных сегментов постоянных магнитов индуктора и немагнитной обоймы определяется количеством сегментов и геометрическими размерами исходных цилиндрических магнитов. Диаметр расточки обоймы - Di ограничен значениями: d/4<πDi/N<d/2, где d - диаметр исходного цилиндрического магнита. Изготовленные сегменты постоянных магнитов устанавливаются в обойму и фиксируются термостойким клеем. Необходимый внутренний диаметр индуктора обеспечивается расточкой внутреннего диаметра после сборки сегментов в обойме.

Сущность изобретения поясняется чертежами.

На фиг.1 изображен общий вид собранного индуктора однородного магнитного поля, состоящего из восьми сегментов постоянных магнитов (1,......8) с указанием направления намагничивания каждого из них.

На фиг.2 приведены карты раскроя цилиндрических магнитов, у каждого магнита вдоль продольной оси срезаются две плоскости, угол между которыми составляет α=360/N. Для индуктора, состоящего из восьми сегментов, число вариантов базирования биссектрисы угла раскроя относительно направления намагничивания сегментов равно пяти.

Рассмотрим формирование однородного магнитного поля во внутреннем пространстве восьмисегментного индуктора. Цилиндрические постоянные магниты (1,...8) повергаются предварительному намагничиванию. Величина остаточного намагничивания зависит от марки постоянного магнита, в частности, для магнита неодим-железо-бор - составляет около 1 Тл. Раскрой магнитов осуществляется в соответствие с картой раскроя, приведенной на фиг.2. Величина индукции поля и равномерность однородности поля в основном определяется параметрами сегментов постоянных магнитов, устанавливаемых в позиции 1 и 5 (фиг.1) индуктора. Влияние параметров оставшихся сегментов (2, 3, 4 и 6, 7, 8) на характеристики однородности магнитного поля не существенно, что значительно снижает требования к отбору сегментов для комплектования индуктора.

Выполнение внутренней поверхности обоймы индуктора в виде «ромашки» позволяет лучше использовать объем цилиндрических постоянных магнитов и облегчает сборку индуктора, а также фиксацию отдельных сегментов постоянных магнитов в обойме.

На фиг.3 приведено вычисленное распределение индукции магнитного поля по расточке индуктора, т.е. непосредственно на внутренней поверхности индуктора. Периодические пики магнитной индукции соответствуют точкам соединения отдельных сегментов постоянных магнитов, имеющим разное направление намагничивание.

При увеличении количества сегментов постоянных магнитов в индукторе разность между значениями индукции в середине сегмента и на их краях на поверхности индуктора уменьшается.

На фиг.4 представлено диаметральное распределение индукции магнитного поля внутри индуктора. Сечение А-А (фиг.1) проведено через середину сегментов постоянных магнитов, а сечение Б-Б (фиг.1) - через плоскости «сшивки» двух соседних магнитов. Измеренное среднее значение индукции однородного магнитного поля в изготовленном индукторе составляет 0,62 Тл, а расчетное значение равно 0,65 Тл.

Таким образом, по сравнению с прототипом предложенный индуктор однородного магнитного поля имеет технологичную конструкцию, обеспечивающую необходимое качество однородности магнитного поля, что позволяет использовать его в разнообразных электромеханических устройствах, обладающих линейными регулировочными характеристиками.

Индуктор однородного магнитного поля, состоящий из кольцевого постоянного магнита, в котором сформированы отдельные намагниченные сегменты, создающие внутри кольцевого постоянного магнита однородное магнитное поле, отличающийся тем, что намагниченные сегменты выполнены из отдельных предварительно намагниченных и разрезанных цилиндрических постоянных магнитов, установленных в немагнитную обойму, при этом раскрой предварительно намагниченных цилиндрических постоянных магнитов осуществляется по двум продольным плоскостям сечения, угол α между которыми определяется количеством N намагниченных сегментов и равен α=360/N, а угол между одной из указанных плоскостей сечения и направлением намагничивания каждого из указанных сегментов зависит от места расположения данного намагниченного сегмента по расточке кольцевого постоянного магнита и определяется в соответствии с формулой αk=(4π/N)k, где k=0, 1, 2, 3, 4,...N - порядковый номер намагниченного сегмента по расточке кольцевого постоянного магнита.



 

Похожие патенты:

Изобретение относится к электротехнике, к электродвигателям, и может быть использовано в коллекторных электродвигателях с дисковым ротором и с возбуждением от постоянных магнитов.

Изобретение относится к устройству для вентиляции электродвигателя рельсовой тяги и электродвигателю, оснащенному таким устройством. .

Изобретение относится к области электротехники и электромашиностроения, в частности, к роторам крупных электрических машин, например, турбогенераторов. .

Изобретение относится к области электротехники, а именно к технологии изготовления магнитопроводов электрических машин. .

Изобретение относится к области электротехники и электромашиностроения, в частности - к роторам крупных электрических машин, например турбогенераторов. .

Изобретение относится к области производства электродвигателей погружных насосов. .

Изобретение относится к области электротехники и электромашиностроения, в частности к роторам крупных электрических машин, например турбогенераторов. .

Изобретение относится к области электротехники и электромашиностроения, в частности к охлаждению электрических машин с газовым охлаждением - с аксиальным охлаждением ротора и тангенциальным охлаждением статора.

Изобретение относится к маховиковым системам накопления энергии. .

Изобретение относится к области электротехники и электромашиностроения и может быть использовано при создании статоров двухполюсных электрических машин, например турбогенераторов.

Изобретение относится к опорному устройству сердечника статора роторной электрической машины

Изобретение относится к электротехнике и может быть использовано для создания информационных преобразователей линейных и угловых перемещений, шаговых двигателей, электрических машин постоянного и переменного тока различной мощности

Изобретение относится к электромашиностроению, в частности к электрическим машинам постоянного тока с постоянными магнитами, и может быть использовано в электрических двигателях и генераторах постоянного тока

Изобретение относится к электротехнике и электромашиностроению, в частности к роторам магнитоэлектрических машин, преимущественно синхронных генераторов с возбуждением от постоянных магнитов

Изобретение относится к электрическим машинам и предназначено для роторов с постоянными магнитами, преимущественно из редкоземельных металлов, работающих в химически агрессивных средах, например для вентильных погружных электродвигателей (ПЭД) и устройств гидрозащиты ПЭД с магнитными муфтами

Изобретение относится к области электротехники и электромашиностроения и может быть использовано в крупных горизонтальных электрических машинах переменного тока, например, в асинхронных двигателях, имеющих щитовые подшипники

Изобретение относится к области электротехники, а именно конструкциям двухпакетных электрических машин

Изобретение относится к области электротехники, а именно - к особенностям конструктивного выполнения сердечников статоров коллекторных электрических машин

Изобретение относится к области электротехники и касается особенностей выполнения двигателей с постоянными магнитами на роторе

Изобретение относится к области электротехники, а именно к асинхронным электрическим машинам, и может быть использовано в ракетостроении, судостроении, а также в некоторых технологических процессах, связанных с центрифугированием
Наверх