Устройство для определения углового положения подвижного объекта

Изобретение относится к области измерительной техники и может быть использовано в навигации для определения угловых положений автоматических подводных, надводных и летательных аппаратов, в нефтепромысловой геофизике для определения углового положения буровой скважины. Устройство для определения углового положения подвижного объекта, состоящее из четырех трехкомпонентных акселерометров, регистрирующего блока и вычислительного устройства, размещенных и включенных между собой соответствующим образом, обеспечивает исключение влияний магнитных возмущений и ускорений, обусловленных неравномерностью скорости поступательного движения и изменением направления движения объекта, на погрешность определения углового положения упомянутого объекта, что повышает точность определения углового положения подвижного объекта. 1 ил.

 

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в навигации для определения угловых положений автоматических подводных, надводных и летательных аппаратов, в нефтепромысловой геофизике для определения углового положения буровой скважины [1-3].

Известно устройство для определения углового положения подвижного объекта [1], состоящее из двухкомпонентного датчика, образованного двумя однокомпонентными магниточувствительными датчиками, оси которых перпендикулярны, немагнитной горизонтальной площадки, на которой расположены эти датчики так, что их оси параллельны площадке, карданова подвеса, на котором расположена упомянутая площадка, объекта в виде полого цилиндра, к корпусу которого закреплен карданов подвес с датчиками, маятника, жестко связанного с горизонтальной площадкой, катушкой индуктивности, жестко связанной с объектом и охватывающей датчики, двух усилительно-преобразовательных блоков, первые входы которых подключены к выходам соответствующих датчиков, двух фильтров нижних частот, входы которых подключены к выходам соответствующих усилительно-преобразовательных блоков через регистрирующие приборы, а выходы подключены к первым входам соответствующих датчиков, двух синхронных детекторов низкой частоты, входы которых подключены к выходам соответствующих усилительно-преобразовательных блоков, двух генераторов переменной ЭДС и генератора низкой частоты. При этом первый выход каждого из генераторов переменной ЭДС подключен к второму входу соответствующего усилительно-преобразовательного блока. Первый выход генератора низкой частоты подключен к вторым входам синхронных детекторов, а два других выхода подключены к выводам катушки индуктивности.

Известное устройство работает следующим образом. С помощью карданова подвеса площадка с двумя датчиками находится в горизонтальном положении. Стабилизация площадки в горизонтальном положении осуществляется с помощью маятника, поэтому оба датчика реагируют только на горизонтальную составляющую магнитного поля. Катушка индуктивности, охватывающая оба датчика, жестко связана с корпусом цилиндрического объекта. Ось катушки индуктивности перпендикулярна осям магниточувствительных датчиков, когда она, а значит и ось цилиндрического объекта, совпадают с вертикалью. В катушке индуктивности, подключенной к генератору низкой частоты, протекает низкочастотный ток, поэтому упомянутая катушка воспроизводит низкочастотное магнитное поле, на которое магниточувствительные датчики не реагируют, то есть переменное магнитное поле на них не действует, когда ось катушки совпадает с вертикалью. Если ось катушки индуктивности (ось цилиндрического объекта) отклонена от вертикали, то на датчики действует не только горизонтальная составляющая геомагнитного поля, но и переменное магнитное поле, воспроизводимое катушкой индуктивности. На вторые входы датчиков подаются с первых выходов соответствующих генераторов переменные ЭДС. В результате этого на выходе каждого из датчиков появляются ЭДС второй гармоники, каждая из которых пропорциональна горизонтальной составляющей геомагнитного поля и горизонтальной составляющей переменного магнитного поля, воспроизводимого катушкой индуктивности, когда ось цилиндрического объекта отклонена от вертикали. Выходные сигналы с датчиков усиливаются и детектируются в соответствующих усилительно-преобразовательных блоках, поэтому выходные сигналы с усилительно-преобразовательных блоков пропорциональны измеряемым компонентам магнитной индукции. Для детектирования сигналов на вторые входы каждого усилительно-преобразовательного блока подается переменное напряжение с вторых выходов соответствующих генераторов переменной ЭДС. При этом каждый усилительно-преобразовательный блок состоит из избирательного усилителя и синхронного детектора [1]. Выходной сигнал с выхода каждого усилительно-преобразовательного блока подается через регистрирующий прибор (микроамперметр) и фильтр нижних частот на первый вход соответствующего датчика, обеспечивая тем самым отрицательную обратную связь по измеряемой горизонтальной составляющей геомагнитного поля. Фильтры нижних частот препятствуют прохождению сигналов, пропорциональных переменному магнитному полю, воспроизводимому катушкой индуктивности, на первые входы соответствующих датчиков. Поэтому токи в цепях обратной связи пропорциональны горизонтальным составляющим геомагнитного поля. Сигналы с выходов усилительно-преобразовательных блоков подаются на первые входы соответствующих синхронных детекторов. На вторые входы этих детекторов подается переменное напряжение с генератора низкой частоты, поэтому сигналы на выходе каждого синхронного детектора пропорциональны амплитуде горизонтальной составляющей переменного магнитного поля. По измеренным составляющим переменного и постоянного магнитного поля определяют азимутальный и зенитный углы цилиндрического объекта.

Известное техническое решение не обеспечивает определение визирного угла, а значит, информация об угловом положении цилиндрического объекта будет неполной. Кроме того, в известном техническом решении определяемые азимутальный и зенитный углы существенно зависят от переносных ускорений, обусловленных неравномерностью скорости поступательного движения и изменением направления движения объекта.

Известно устройство для определения углового положения подвижного объекта (корпуса измерительного скважинного зонда) [2], которое по совокупности существенных признаков наиболее близко предлагаемому и принято за прототип. Известное устройство [2] состоит из корпуса измерительного скважинного зонда, продольная ось которого совпадает с направлением буровой скважины, трехкомпонентного магнитометра, у которого оси магниточувствительного датчика взаимно ортогональны, трехкомпонентного акселерометра, оси чувствительности которого коллинеарны осям магниточувствительного датчика магнитометра и осям строительной системы координат OXYZ корпуса измерительного скважинного зонда с началом координат в точке O, интерфейсного блока (регистрирующего блока), подключенного к выходам трехкомпонентного магнитометра и трехкомпонентного акселерометра, и электронно-вычислительной машины (вычислительного устройства), подключенной к регистрирующему блоку. При этом одна из осей OZ строительной системы координат OXYZ совпадает с продольной осью корпуса скважинного зонда, а значит и с направлением скважины, вторая ось ОХ перпендикулярна оси OZ и третья ось ОУ перпендикулярна осям ОХ и OZ. Взаимное расположение положительных направлений координатных осей ОХ, ОУ, OZ соответствуют правой системе координат.

Известное устройство [2] работает следующим образом. По сигналам с трехкомпонентного магнитометра, пропорциональным проекциям вектора индукции геомагнитного поля, и сигналам с трехкомпонентного акселерометра, пропорциональным проекциям вектора ускорения силы тяжести на оси чувствительности упомянутого акселерометра, с помощью регистрирующего блока и вычислительного устройства определяют расчетным путем азимутальный, визирный и зенитный углы корпуса скважинного зонда, а значит, определяют и угловое, положение буровой скважины, в которой находится корпус скважинного зонда.

Неравномерность движения корпуса скважинного зонда и случайные отклонения при движении корпуса этого зонда от выбранного направления (рыскания зонда) приводят к появлению на выходах трехкомпонентного акселерометра сигналов, пропорциональных не только проекциям вектора ускорения силы тяжести, но и проекциям векторов ускорений, обусловленных неравномерностью скорости поступательного движения и изменением направления движения корпуса скважинного зонда, что является одной из существенных причин погрешности определения углового положения корпуса скважинного зонда (подвижного объекта), а значит и буровой скважины. Кроме того, наличие магнитных возмущений от сотен до тысяч нанотесла [4] приводит к погрешности определения магнитного курса подвижного объекта до единиц угловых градусов, а следовательно, и к погрешности определения углового положения упомянутого объекта.

Задачей предлагаемого изобретения является разработка устройства, исключающего влияние магнитных возмущений и влияние ускорений объекта, обусловленных неравномерностью скорости поступательного движения и изменением направления движения объекта на погрешность определения углового положения подвижного объекта. Поставленная задача решается за счет применения на подвижном объекте четырех трехкомпонентных акселерометров, реагирующих на соответствующие ускорения и размещенных на объекте определенным образом.

Предлагаемое устройство для определения углового положения подвижного объекта, включающее трехкомпонентный акселерометр, у которого оси чувствительности коллинеарны соответствующим строительным осям системы координат OXYZ подвижного объекта с началом координат в точке О, регистрирующий блок, подключенный к трехкомпонентному акселерометру, и вычислительное устройство, подключенное к регистрирующему блоку, снабжено вторым, третьим и четвертым трехкомпонентными акселерометрами, которые подключены к регистрирующему блоку, при этом первый и второй трехкомпонентные акселерометры размещены на одной из строительных осей системы координат OXYZ подвижного объекта симметрично относительно начала координат точки О, третий и четвертый трехкомпонентные акселерометры размещены на одной из строительных осей системы координат OXYZ подвижного объекта симметрично относительно начала координат точки О, оси чувствительности второго, третьего и четвертого трехкомпонентных акселерометров коллинеарны соответствующим строительным осям системы координат OXYZ, у которой начало координат точка О выбрана в месте центра тяжести подвижного объекта.

Применение в предлагаемом устройстве для определения углового положения подвижного объекта трехкомпонентного акселерометра, у которого оси чувствительности коллинеарны строительным осям подвижного объекта, регистрирующего блока и вычислительного устройства в совокупности с вторым, третьим и четвертым трехкомпонентными акселерометрами, размещенными на подвижном объекте и включенными между собой соответствующим образом, обеспечивает исключение влияния магнитных возмущений и ускорений объекта, обусловленных неравномерностью скорости поступательного движения и изменением направления движения объекта, на погрешность определения углового положения упомянутого подвижного объекта.

Таким образом, технический результат предлагаемого изобретения выражается в исключении влияния магнитных возмущений и ускорений, обусловленных неравномерностью скорости поступательного движения и изменением направления движения объекта, в частности от его рыскания, на погрешность определения углов курса, крена, тангажа, что повышает точность определения углового положения подвижного объекта.

Сущность предлагаемого технического решения поясняется следующим чертежом.

На чертеже изображена структурная схема устройства для определения углового положения подвижного объекта.

Предлагаемое устройство для определения углового положения подвижного объекта состоит (см. чертеж) из трехкомпонентных акселерометров 1-4, регистрирующего блока 5, входы которого подключены к выходам акселерометров 1-4, вычислительного устройства 6, подключенного к блоку 5, и подвижного объекта 7, на котором размещены акселерометры 1-4, блок 5 и вычислительное устройство 6. Акселерометры 1 и 2 размещены, например, на продольной оси ОХ объекта 7 симметрично относительно начала строительной системы координат OXYZ точки О, выбранной в месте центра тяжести объекта 7, а акселерометры 3 и 4 размещены, например, на оси ОУ симметрично относительно центра тяжести объекта 7. Оси чувствительности акселерометров 1-4 коллинеарны соответствующим осям строительной системы координат OXYZ.

Предлагаемое устройство для определения углового положения подвижного объекта работает следующим образом. Сигналы с выходов каждого из акселерометров 1 и 2 (см. чертеж) пропорциональны, например, проекциям веторов ускорений, обусловленных неравномерностью скорости поступательного движения и изменением направления движения объекта 7, и проекциям вектора ускорения силы тяжести, а сигналы с выходов каждого из акселерометров 3 и 4 пропорциональны только проекциям векторов ускорений, обусловленных неравномерностью скорости поступательного движения и изменением направления движения объекта 7 [5, 6]. Акселерометры 1 и 2, 3 и 4 размещены симметрично относительно центра тяжести объекта 7, поэтому векторы ускорений от вращения, в частности от рыскания объекта 7 как в местах размещения акселерометров 1 и 2, так и в местах размещения акселерометров 3 и 4, равны по величине и противоположны по направлению, а векторы ускорений, обусловленные неравномерностью скорости поступательного движения объекта 7, и ускорений силы тяжести равны. Такое размещение на объекте 7 акселерометров 1 и 2, 3 и 4 обеспечивает возможность исключения погрешности определения направляющих косинусов n1i, n2i, n3i строительной оси OZ в выбранной опорной системе координат, например географической системе координат от ускорений, связанных с изменением скорости поступательного движения и изменением направления движения объекта и возможность определения значений центростремительного aхцi и тангенциальных ayτi, azτi ускорений, например, по результатам измерений акселерометрами 1 и 2 за малый интервал времени, в течение которого упомянутые ускорения можно принять постоянными [7], где i=1, 2, 3,... - моменты времени регистрации сигналов с выходов акселерометров 1-4.

Уравнения для определения n1i, n2i, n3i можно представить в следующем виде:

где ax1i, by1i, cz1i и ax2i, by2i, cz2i - проекции векторов ускорений, измеренные соответствующими акселерометрами 1 и 2; dx1i, ey1i, kz1i и dx2i, ey2i, kz2i проекции векторов ускорений, измеренные соответствующими акселерометрами 3 и 4; g - модуль вектора ускорения силы тяжести. Из уравнений (1)-(3) определяют углы крена θi и тангажа ψi.

Уравнения для определения aхцi, ayτi, azτi можно представить в следующем виде:

aхцi=(ax1i-ax2i)/2;

Проекция вектора ускорения aхцi пропорциональна изменению угла отклонения продольной строительной оси ОХ объекта 7 (см. чертеж) за [i-I, i] интервал времени относительно предыдущей ее ориентации. В таком случае по известным расстояниям акселерометров 1 и 2 до центра тяжести объекта и ускорению aхцi определяют отклонение продольной оси ОХ объекта 7 за [i-I, i] интервал времени от известного предыдущего направления, а затем по известным упомянутому отклонению направления оси ОХ, углу тангажа ψi, ускорению ayτi и угловому положению объекта в (i-I) момент времени определяют географический курс ϕi объекта 7 в i-ый момент времени. При определении географического угла курса по результатам измерений акселерометрами 3 и 4 предварительно находят угол отклонения оси OY объекта 7 за [i-I, i] интервал времени относительно предыдущей ее ориентации. Затем по известным упомянутому углу отклонения оси ОУ, углов крена θi и тангажа ψi, тангенциальному ускорению ayτi для акселерометров 3 и 4 и угловому положению объекта в (i-I) момент времени определяют географический курс ϕi объекта 7 в i-ый момент времени.

Таким образом, в предлагаемом техническом решении определение углового положения подвижного объекта осуществляется по измеренным ускорениям акселерометрами 1-4 (см. чертеж), что исключает влияние магнитных возмущений на погрешность определения углового положения подвижного объекта 7. Предлагаемое техническое решение исключает влияние ускорений, обусловленных неравномерностью скорости поступательного движения и изменением направления движения объекта, на погрешность определения углов крена и тангажа, что повышает точность определения угла курса, а следовательно, и повышает точность определения углового положения подвижного объекта.

Следует заметить, что для данного размещения акселерометров 1-4 на объекте (см. чертеж) можно определить действительное значение угла курса объекта в i-ый момент времени из системы двух уравнений для косинуса угла отклонения оси ОХ и косинуса угла отклонения оси OY за [i-I, i] интервал времени,

В предлагаемом техническом решении акселерометры 1-4 (см. чертеж) могут быть выполнены на базе однокомпонентных акселерометров обоих типов [5, 6]. В качестве регистрирующего блока 5 и устройства 6 можно использовать преобразователь измерительный многоканальный ПИМ-1 (сертификат №15660, Госстандарт России).

Литература

1. Афанасьев Ю.В. Феррозонды. - Л.: Энергия. 1969. 168 с.

2. Алимбеков Р.И., Зайко А.И. Аппаратно-программный комплекс для измерения пространственных углов //Измерительная техника. 2004. №12. С.27-29.

3. Афанасьев Ю.В. Феррозондовые приборы. - Л.: Энергоатомиздат. 1986. 188 с.

4. Яновский Б.М. Земной магнетизм. - Л.: ЛГУ. 1978. 592 с.

5. Девятисильный А.С. Измерение линейных ускорений с использованием оптического излучения //Измерительная техника. 2004. №10. С.31-32.

6. Мельников В.Е. Электромеханические преобразователи на базе кварцевого стекла. - М.: Машиностроение. 1984. 159 с.

7. Одинова И.В., Блюмин Г.Д., Карпухин А.В. и др. Теория и конструкция гироскопических приборов и систем. - М.: Высшая школа. 1971. 508 с.

Устройство для определения углового положения подвижного объекта, включающее трехкомпонентный акселерометр, у которого оси чувствительности коллинеарны соответствующим строительным осям системы координат OXYZ подвижного объекта с началом координат в точке О, регистрирующий блок, подключенный к трехкомпонентному акселерометру, и вычислительное устройство, подключенное к регистрирующему блоку, отличающееся тем, что оно снабжено вторым, третьим и четвертым трехкомпонентными акселерометрами, которые подключены к регистрирующему блоку, при этом первый и второй трехкомпонентные акселерометры размещены на одной из строительных осей системы координат OXYZ подвижного объекта симметрично относительно начала координат точки О, третий и четвертый трехкомпонентные акселерометры размещены на одной из строительных осей системы координат OXYZ подвижного объекта симметрично относительно начала координат точки О, оси чувствительности второго, третьего и четвертого трехкомпонентных акселерометров коллинеарны соответствующим строительным осям системы координат OXYZ, у которой начало координат точка О выбрана в месте центра тяжести подвижного объекта.



 

Похожие патенты:

Изобретение относится к области авиации и может быть использовано в приборном оборудовании летательного аппарата для упрощения восприятия и переработки информации.

Изобретение относится к оптико-электронной технике и может быть использовано при изготовлении оптических наблюдательных приборов. .

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов

Изобретение предназначено для применения в области авиационного приборостроения, в частности в пилотажно-навигационном оборудовании летательных аппаратов (ЛА). Технический результат - повышение надежности и безопасности совершения посадки ЛА, увеличение точности формирования заданной траектории посадки. Способ управления ЛА при заходе на посадку включает измерение параметров движения ЛА, коррекцию, с помощью любого из известных методов комплексной обработки информации, погрешностей параметров движения по данным от спутниковой навигационной системы, формирование, на основе откорректированных координат ЛА и координат торцов взлетно-посадочной полосы (ВПП), курса ВПП, длины ВПП, дальности до ближнего торца ВПП, высоты ЛА относительно ВПП, автоматическое или ручное управление угловым положением ЛА по крену и тангажу с учетом сигналов углов отклонения по курсу и глиссаде, дополнен операциями, в соответствии с которыми для формирования заданной траектории посадки задают угол наклона траектории посадки, размещают под точкой стандартного размещения курсового радиомаяка на продолжении заданной траектории посадки виртуальный курсо-глиссадный радиомаяк (ВКГРМ) и формируют его пеленг и угол места, а углы отклонения по курсу и глиссаде от траектории посадки формируют соответственно как рассогласование пеленга ВКГРМ и курса ВПП и как рассогласование угла места ВКГРМ и заданного экипажем угла наклона траектории посадки. 5 ил.

Изобретение относится к комплексной системе управления траекторией летательного аппарата при заходе на посадку. Система включает инерциальную навигационную систему, систему воздушных сигналов, индикатор посадочных сигналов (ИПС), блок комплексной обработки информации (КОИ), спутниковую навигационную систему, блок памяти, блок определения параметров взлетно-посадочной полосы (ВПП), блок определения местоположения виртуального курсо-глиссадного радиомаяка (ВКГРМ), блок определения пеленга и дальности ВКГРМ, первый и второй сумматоры, блок определения угла места ВКГРМ. Технический результат заключается в повышении надежности и безопасности совершения посадки летательного аппарата. 7 ил.

Изобретение относится к измерительной технике и предназначено для непрерывной коррекции углов крена и тангажа подвижных объектов, в частности беспилотных летательных аппаратов. Изобретение предусматривает использование сигналов, соответствующих угловой скорости объекта, и сигнала, соответствующего земной скорости объекта, и комплексирование данных сигналов и сигналов, соответствующих линейным ускорениям, преобразованных с учетом параметров полета объекта, и адаптивную оценку крена и тангажа осуществляют посредством фильтра Калмана, в котором коэффициент усиления изменяется в зависимости от текущих значений модули перегрузки, угловых скоростей и земной скорости объекта. В процессе работы интенсивность коррекции адаптируется к отклонениям кажущейся вертикали от гравитационной. При этом происходит подавление влияния кажущегося ускорения, достаточное для обеспечения необходимой точности оценивания крена и тангажа. За счет этого зависимость маятниковой коррекции от вида движения объекта ослабляется до уровня, позволяющего использовать датчики ДУС и ДЛУ средней и низкой точности, в том числе микромеханического типа. Технический результат - повышение точности навигации подвижных объектов. 2 ил.

Изобретение относится к области приборостроения и может найти применение в астроинерциальных навигационных системах, в которых основная навигационная информация корректируется по сигналам, поступающим с выхода астровизирующего устройства. Технический результат - повышение надежности. Для этого блок формирования астропоправок подключен к блоку отбраковки ложных астропоправок, состоящему из последовательно соединенных буфера выходных сигналов блока формирования астропоправок, двух счетчиков, обеспечивающих выборку сигналов из буфера, разностной системы и системы сравнения, формирующую порог, по которому производится отбраковка сбойных сигналов, выход которого подключается к входу блока формирования осредненного значения астропоправок. При этом блок формирования осредненного значения астропоправок выполнен с возможностью сравнения, обеспечивающего отбраковку сбойных астропоправок по порогу, сформированному в блоке отбраковки ложных астропоправок. 4 ил.

Изобретение относится к области приборостроения и может найти применение в высокоточных астроинерциальных системах пилотируемых авиационно-космических объектов. Технический результат - повышение точности. Для этого осуществляют отбраковку дефектных сигналов. При этом формируют пары сигналов, составляющие максимальное значение полученной абсолютной величины разности, и исключают ее из последующего рассмотрения. Повторяют отбраковку оставшихся сигналов вплоть до того, как не исключенными из рассмотрения останется один сигнал, в случае нечетного начального числа обрабатываемых сигналов, либо два сигнала, в случае четного начального числа обрабатываемых сигналов. Формируется константа, равная значению оставшегося сигнала, либо среднему арифметическому двух оставшихся в рассмотрении сигналов, а в качестве измерения формируется осредненное значение как сумма сигналов, абсолютная величина разности которых и сформированной в процессе отбраковки константы не превышает заданного порога, величина которого определяется точностными характеристиками астровизирующего устройства и делением полученной суммы на число сигналов, удовлетворяющих этому условию. 2 ил.

Способ определения углового положения подвижного объекта относительно центра масс, т.е определение пространственной ориентации при угловом движении, преимущественно летательных аппаратов (ЛА), относительно какой-либо базовой системы координат, путем аналитического ее вычисления на основе измерений каких-либо отдельных параметров ориентации (углов, угловых скоростей и т.д.). Способ включает определение текущей угловой ориентации системы координат OX1Y1Z1 относительно геоцентрической базовой системы координат OXYZ, задание требуемой ориентации системы координат OX2Y2Z2 относительно геоцентрической базовой системы координат OXYZ, при этом системы координат OX1Y1Z1 и OX2Y2Z2 имеют начало координат в центре масс объекта и связаны с ним. Текущие значения углов ориентации связанной системы координат относительно базовой определяются с помощью бесплатформенной инерциальной навигационной системы (БИНС), при этом в геоцентрической базовой системе координат направление оси OZ принимают совпадающим с направлением вектора вращения Земли, а ось ОХ направлена в точку пересечения гринвичского меридиана с экватором. Определяют углы относительной ориентации ςx, ςy, ςz между соответствующими осями связанной системы текущей угловой ориентации и требуемой в геоцентрической базовой системе координат по определенным зависимостям и по результатам вычислений судят об угловом положении подвижного объекта. Технический результат - расширение области применения, повышение достоверности и точности определения углового положения подвижного объекта. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Технический результат - повышение точности и обеспечение непрерывности коррекции углов курса, тангажа и крена подвижного объекта, в частности ЛА в условиях маневрирования в полете. Указанный результат достигается за счет того, что согласно данному способу, при котором коррекция углов крена и тангажа подвижного объекта осуществляется путем обработки сигналов ДЛУ и ДУС, использования адаптивной обработки посредством фильтра Калмана и измерения магнитного курса магнитометрическим датчиком, дополнительно определяют вертикальную и горизонтальную проекции абсолютного значения магнитного поля Земли на плоскости магнитного меридиана с учетом угла магнитного наклонения по известным координатам местоположения, определяют разность измеренных значений проекций магнитного поля Земли трехкомпонентным магнитометрическим датчиком и проекций составляющих магнитного поля Земли, определенных по текущим координатам подвижного объекта при помощи матрицы направляющих косинусов на связанную ось. Минимизируя полученную разность путем использования фильтра Калмана, получают скорректированные текущие значения магнитного курса, углов тангажа и крена объекта. 1 з.п. ф-лы.

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов. Технический результат - повышение точности способа коррекции бесплатформенной инерциальной навигационной системы (БИНС) по углам крена и тангажа, в частности, в условиях маневрирования летательного аппарата (ЛА). Способ включает в себя комплексирование сигналов, соответствующих угловой скорости и земной скорости объекта, с сигналами, соответствующими линейным ускорениям и преобразованными с учетом параметров полета объекта, и адаптивную оценку крена и тангажа посредством фильтра Калмана, в котором коэффициент усиления изменяется в зависимости от текущих значений модулей перегрузки и линейной скорости, а также угловых скоростей. Дополнительно используют сигнал, соответствующий продольной скорости объекта, полученный от системы воздушных сигналов (СВС) в виде функции от динамического давления, и сигнал, соответствующий продольному ускорению, полученный путем дифференцирования с последующим сглаживанием сигнала скорости от СВС. Кроме того, производят оптимизацию коэффициентов фильтра Калмана, для чего формируют девять обучающих последовательностей, назначают шесть коэффициентов фильтра, подлежащих настройке, и критерий качества в виде взвешенной среднеквадратической ошибки (СКО) ориентации по крену и тангажу, усредненной по времени и по множеству всех девяти обучающих последовательностей. Оптимизацию коэффициентов алгоритма осуществляют в три этапа. Первый этап заключается в численной минимизации критерия качества и определении коэффициентов для полетов в спокойной атмосфере. Второй этап заключается в численной минимизации критерия качества и определении коэффициентов для полетов в условиях турбулентности. Третий этап определяет процедуру, удовлетворяющую с достаточной точностью полетам как в спокойной атмосфере, так и в турбулентности, путем линейной интерполяции коэффициентов фильтра Калмана по результатам первого и второго этапов. Изобретение позволяет использовать датчики ДУС и ДЛУ средней и низкой точности, в том числе микромеханического типа, так как из-за непрерывной коррекции ошибки не накапливаются. Устройство не требует начальной выставки и обладает свойством самовыставки в течение нескольких секунд и может быть использовано на всех типах ЛА. 3 ил., 1 табл.
Наверх