Электромагнит

Изобретение относится к области электротехники. Техническим результатом является повышение быстродействия электромагнита постоянного тока. Указанный технический результат достигается тем, что в электромагните, содержащем намагничивающую катушку и магнитную систему с рабочим воздушным зазором, включающую в себя постоянный магнит и выполненные из магнитно-мягкого материала корпус, сердечник, якорь, опорный и проходной фланцы, постоянный магнит охватывает часть сердечника или якоря и намагничен вдоль оси магнитной системы, а к торцевым поверхностям постоянного магнита примыкают два магнитных шунта, закрепленных, соответственно, на сердечнике или якоре и выполненных из магнитно-мягкого материала, причем направление магнитного потока, создаваемого постоянным магнитом в рабочем воздушном зазоре, совпадает с направлением магнитного потока, создаваемого катушкой. 2 ил.

 

Изобретение относится к электротехнике, в частности к конструкции электромагнитов постоянного тока, которые могут быть использованы в качестве исполнительных элементов в автоматизированных системах, где требуется повышенное быстродействие.

Известен электромагнит (патент США №6670876, МПК H01F 3/00), содержащий катушку и магнитную систему, включающую в себя магнитопровод и якорь, движущийся в осевом направлении. Постоянный магнит установлен между двумя частями корпуса магнитопровода.

Недостатком известной конструкции является недостаточное быстродействие электромагнита, так как магнитный поток, создаваемый катушкой и определяющий развиваемое электромагнитом усилие, проходит через постоянный магнит, магнитная проницаемость материала которого незначительна.

Известен также электромагнит (патент РФ №2174262, МПК H01F 7/13), который содержит катушку намагничивания и магнитопровод. Магнитопровод выполнен, по крайней мере, из двух частей, хотя бы часть одной из них, расположенная во внутренней полости катушки намагничивания, выполнена из магнитотвердого материала.

Такая конструкция позволяет увеличить силу магнитного притяжения, уменьшить энергопотребление и увеличить быстродействие электромагнита.

Недостатком известной конструкции является недостаточное быстродействие электромагнита, так как магнитный поток, создаваемый катушкой и определяющий развиваемое электромагнитом усилие, проходит через постоянный магнит, магнитная проницаемость материала которого незначительна.

Задачей изобретения является повышение быстродействия электромагнита постоянного тока.

Поставленная задача решается тем, что в электромагните, содержащем намагничивающую катушку и магнитную систему с рабочим воздушным зазором, включающую в себя постоянный магнит и выполненные из магнитно-мягкого материала корпус, сердечник, якорь, опорный и проходной фланцы, постоянный магнит охватывает часть сердечника или якоря и намагничен вдоль оси магнитной системы, а к торцевым поверхностям постоянного магнита примыкают два магнитных шунта, закрепленных, соответственно, на сердечнике или якоре и выполненных из магнитно-мягкого материала, причем направление магнитного потока, создаваемого постоянным магнитом в рабочем воздушном зазоре, совпадает с направлением магнитного потока, создаваемого катушкой.

На фиг.1 изображен электромагнит, часть сердечника которого охватывает постоянный магнит, а к торцевым поверхностям постоянного магнита примыкают два магнитных шунта из магнитно-мягкого материала, закрепленных на сердечнике.

На фиг.2 изображен электромагнит, часть якоря которого охватывает постоянный магнит, а к торцевым поверхностям постоянного магнита примыкают два магнитных шунта из магнитно-мягкого материала, закрепленных на якоре.

Электромагнит содержит намагничивающую катушку 1 и магнитную систему с рабочим воздушным зазором 2, включающую в себя выполненные из магнитно-мягкого материала корпус 3, сердечник 4, якорь 5, опорный 6 и проходной 7 фланцы. На сердечнике 4 (фиг.1) или якоре 5 (фиг.2) расположен охватывающий часть сердечника 4 (фиг.1) или якоря 5 (фиг.2) постоянный магнит 8, намагниченный вдоль оси магнитной системы, к торцевым поверхностям которого примыкают два магнитных шунта 9 из магнитно-мягкого материала, охватывающие части сердечника 4 (фиг.1) или якоря 5 (фиг.2). Направление магнитного потока, создаваемого постоянным магнитом 8 в рабочем воздушном зазоре 2, совпадает с направлением магнитного потока, создаваемого катушкой 1.

Если постоянный магнит 8 установлен на сердечнике 4, один из магнитных шунтов 9, примыкающих к торцевым поверхностям постоянного магнита 8, может быть выполнен заодно с сердечником 4.

Если постоянный магнит 8 установлен на якоре 5, то магнитный шунт 9, примыкающий к торцевой поверхности постоянного магнита 8 со стороны проходного фланца 7, может быть выполнен заодно с якорем 5.

При расположении постоянного магнита 8 на сердечнике 4 (фиг.1), когда катушка 1 выключена, большая часть Фп1 поляризующего магнитного потока, создаваемого постоянным магнитом 8, замыкается через примыкающие к торцевым поверхностям постоянного магнита 8 магнитные шунты 9 и охватываемую постоянным магнитом 8 часть сердечника 4, так как этот путь имеет наибольшую магнитную проводимость по сравнению с параллельным путем через магнитный шунт 9, примыкающий к торцевой поверхности постоянного магнита 8 со стороны опорного фланца 6, опорный фланец 6, корпус 3, проходной фланец 7, якорь 5, рабочий воздушный зазор 2, магнитный шунт 9, примыкающий к торцевой поверхности постоянного магнита 8 со стороны рабочего воздушного зазора 2, по которому проходит меньшая часть Фп2 потока поляризующего постоянного магнита 8. Так как магнитный поток Фп2, проходящий через рабочий воздушный зазор 2, при выключенной катушке 1 незначителен, создаваемое электромагнитом усилие не может преодолеть усилие возвратной пружины (на чертеже не показана) и якорь 5 остается неподвижным.

При включении катушки 1 нарастающий в ней ток создает свой магнитный поток Фк, который замыкается через якорь 5, рабочий воздушный зазор 2, сердечник 4, опорный фланец 6, корпус 3, проходной фланец 7. Магнитный поток Фк в охватываемой постоянным магнитом 8 части сердечника 4 направлен навстречу магнитному потоку Фп1. Поэтому возрастающая намагничивающая сила катушки 1 уменьшает магнитный поток Фп1, являющийся частью поляризующего магнитного потока, создаваемого постоянным магнитом 8. Одновременно возрастает часть Фп2 магнитного потока постоянного магнита 8, которая замыкается через выполненный из магнитно-мягкого материала и примыкающий к торцевой поверхности постоянного магнита 8 со стороны опорного фланца 6 магнитный шунт 9, опорный фланец 6, корпус 3, проходной фланец 7, якорь 5, рабочий воздушный зазор 2 и магнитный шунт 9, примыкающий к торцевой поверхности постоянного магнита 8 со стороны рабочего воздушного зазора 2.

При увеличении тока в катушке 1 и достижения создаваемой им намагничивающей силы, достаточной для перемагничивания охватываемой постоянным магнитом 8 части сердечника 4, магнитный поток в этой части сердечника 4 меняет направление и по нему проходит поток Фк, создаваемый катушкой 1. В этом случае магнитный поток Фп1, проходящий через охватываемую постоянным магнитом часть сердечника 4, исчезает и весь магнитный поток постоянного магнита 8 состоит из потока Фп2, замыкающегося через рабочий воздушный зазор 2. Изменение пути замыкания постоянно существующего в системе поляризующего магнитного потока, создаваемого постоянным магнитом 8, приводит к тому, что скорость нарастания магнитного потока в рабочем воздушном зазоре 2 увеличивается, что вызывает увеличение скорости нарастания создаваемого электромагнитом усилия и повышение его быстродействия.

При выключении катушки 1 магнитный поток Фк, создаваемый ее намагничивающей силой, снижается до нуля. При этом происходит перераспределение частей Фп1 и Фп2 магнитного потока постоянного магнита 8 по параллельным путям замыкания. Возрастает часть Фп1 поляризующего магнитного потока, которая снова замыкается по пути с наибольшей магнитной проводимостью через охватываемую постоянным магнитом 8 часть сердечника 4. Одновременно с увеличением потока Фп1 часть магнитного потока Фп2, проходящая через рабочий воздушный зазор 2, стремится к минимуму. Магнитный поток в рабочем воздушном зазоре 2 и развиваемое электромагнитом усилие снижаются и якорь 5 под действием возвратной пружины (на чертеже не показана) возвращается в исходное положение.

При расположении постоянного магнита 8 на якоре 5 (фиг.2), когда катушка 1 выключена, большая часть Фп1 поляризующего магнитного потока, создаваемого постоянным магнитом 8, замыкается через примыкающие к торцевым поверхностям постоянного магнита 8 магнитные шунты 9 и охватываемую постоянным магнитом 8 часть якоря 5, так как этот путь имеет наибольшую магнитную проводимость по сравнению с параллельным путем через магнитный шунт 9, примыкающий к торцевой поверхности постоянного магнита 8 со стороны рабочего воздушного зазора 2, рабочий воздушный зазор 2, сердечник 4, опорный фланец 6, корпус 3, проходной фланец 7, часть якоря 5, не охваченную как постоянным магнитом 8, так и примыкающим к нему шунтом 9, со стороны проходного фланца 7, магнитный шунт 9, примыкающий к торцевой поверхности постоянного магнита 8 со стороны проходного фланца 7, по которому проходит меньшая часть Фп2 потока поляризующего постоянного магнита 8. Так как магнитный поток Фп2, проходящий через рабочий воздушный зазор 2, при выключенной катушке 1 незначителен, создаваемое электромагнитом усилие не может преодолеть усилие возвратной пружины (на чертеже не показана) и якорь 5 остается неподвижным.

При включении катушки 1 нарастающий в ней ток создает свой магнитный поток Фк, который замыкается через якорь 5, рабочий воздушный зазор 2, сердечник 4, опорный фланец 6, корпус 3, проходной фланец 7. Магнитный поток Фк в охватываемой постоянным магнитом 8 части якоря 5 направлен навстречу магнитному потоку Фп1. Поэтому возрастающая намагничивающая сила катушки 1 уменьшает магнитный поток Фп1, являющийся частью поляризующего магнитного потока, создаваемого постоянным магнитом 8. Одновременно возрастает часть Фп2 магнитного потока постоянного магнита 8, которая замыкается через выполненный из магнитно-мягкого материала и примыкающий к торцевой поверхности постоянного магнита 8 со стороны рабочего воздушного зазора 2 магнитный шунт 9, рабочий воздушный зазор 2, сердечник 4, опорный фланец 6, корпус 3, проходной фланец 7, часть якоря 5, не охваченную как постоянным магнитом 8, так и примыкающим к нему шунтом 9, со стороны проходного фланца 7, магнитный шунт 9, примыкающий к торцевой поверхности постоянного магнита 8 со стороны проходного фланца 7.

При увеличении тока в катушке 1 и достижения создаваемой им намагничивающей силы, достаточной для перемагничивания охватываемой постоянным магнитом 8 части якоря 5, магнитный поток в этой части якоря 5 меняет направление и по нему проходит поток Фк, создаваемый катушкой 1. В этом случае магнитный поток Фп1, проходящий через охватываемую постоянным магнитом часть якоря 5 исчезает и весь магнитный поток постоянного магнита 8 состоит из потока Фп2, замыкающегося через рабочий воздушный зазор 2. Изменение пути замыкания постоянно существующего в системе поляризующего магнитного потока, создаваемого постоянным магнитом 8, приводит к тому, что скорость нарастания магнитного потока в рабочем воздушном зазоре 2 увеличивается, что вызывает увеличение скорости нарастания создаваемого электромагнитом усилия и повышение его быстродействия.

При выключении катушки 1 магнитный поток Фк, создаваемый ее намагничивающей силой, снижается до нуля. При этом происходит перераспределение частей Фп1 и Фп2 магнитного потока постоянного магнита 8 по параллельным путям замыкания. Возрастает часть Фп1 поляризующего магнитного потока, которая снова замыкается по пути с наибольшей магнитной проводимостью через охватываемую постоянным магнитом 8 часть якоря 5. Одновременно с увеличением потока Фп1 часть магнитного потока Фп2, проходящая через рабочий воздушный зазор 2, стремится к минимуму. Магнитный поток в рабочем воздушном зазоре 2 и развиваемое электромагнитом усилие снижаются и якорь 5 под действием возвратной пружины (на чертеже не показана) возвращается в исходное положение.

Электромагнит, содержащий намагничивающую катушку и магнитную систему с рабочим воздушным зазором, включающую в себя постоянный магнит и выполненные из магнитно-мягкого материала корпус, сердечник, якорь, опорный и проходной фланцы, отличающийся тем, что постоянный магнит охватывает часть сердечника или якоря и намагничен вдоль оси магнитной системы, а к торцевым поверхностям постоянного магнита примыкают два магнитных шунта, выполненных из магнитно-мягкого материала и закрепленных соответственно на сердечнике или якоре, причем направление магнитного потока, создаваемого постоянным магнитом в рабочем воздушном зазоре, совпадает с направлением магнитного потока, создаваемого катушкой.



 

Похожие патенты:

Изобретение относится к области электротехники. .

Изобретение относится к области электротехники и может быть использовано для изготовления электромагнитных нейтральных реле. .

Изобретение относится к электромагнитному пускателю для перемещения контакта во включенное или выключенное состояние, содержащему стержень, приводящий в движение контакты-контактор, который способен перемещаться в продольном направлении между первым положением, соответствующим выключенному состоянию, и вторым положением, соответствующим включенному состоянию, сердечник, который изготовлен из магнитомягкого материала и соединен с контактором, катушку включения, которая взаимодействует с сердечником, а также полюсную часть, которая изготовлена из магнитомягкого материала, причем ее поверхность, которая расположена со стороны сердечника, в первом положении контактора расположена на расстоянии воздушного промежутка от поверхности сердечника, которая проходит перпендикулярно направлению перемещения, а во втором положении прилегает к упомянутой поверхности сердечника, кроме того, предусмотрено ярмо, которое выполнено из магнитомягкого материала, для замыкания магнитного потока катушки включения через полюсную часть и сердечник, а также постоянный магнит для удержания контактора в первом положении и пружина, которая предварительно натягивает контактор во втором положении в направлении первого положения.

Изобретение относится к области электротехники и может быть использовано в устройствах для блокирования замков автомобилей, сейфов, дверей с целью предотвращения несанкционированного проникновения.

Изобретение относится к электротехнике, а именно к коммутационным аппаратам, и может применяться для защиты выпрямительных установок от обратных токов

Изобретение относится к электротехнике, а именно к коммутационным аппаратам, и может применяться для защиты выпрямительных установок от обратных токов

Изобретение относится к электротехнике. Технический результат состоит в повышении коммутационной способности. В бистабильном электромагнитном приводе с поляризованной параллельной магнитной цепью и параллельными рабочими воздушными зазорами между внешними стержнями U-образного ярма из мягкой стали расположен и выполнен с ними за одно целое плоский постоянный магнит, который содержит центральный стержень из мягкой стали и наводит постоянный магнитный поток на качающийся якорь, опирающийся на центральный стержень. Обмотки возбуждения с раздельным управлением выполнены на каждом внешнем стержне с возможностью подачи в них импульсов для поворота качающегося якоря из одного самофиксирующегося посредством постоянного магнита положения в другое. Магнитный поток, образованный постоянным магнитом, проходит по магнитной цепи, в каждом случае замкнутой через качающийся якорь. Он при наличии магнитного потока, образованного обмоткой возбуждения указанной магнитной цепи, проходящего в противоположном направлении, коммутирован в параллельно расположенную ветвь магнитной цепи, обмотка возбуждения которой находится в невозбужденном состоянии, с возможностью поворота качающегося якоря. 6 з.п. ф-лы, 7 ил.

Изобретение предназначено для систем автоматики взрывоопасных объектов, подвергаемых ударным и вибрационным внешним воздействиям. Техническим результатом, достигаемым при использовании изобретения, является увеличение стойкости к ударным и вибрационным воздействиям, увеличение количества контактов при сохранении габаритно-массовых характеристик, а также расширение области его применения. Электромагнитный поляризованный переключатель содержит поворотный якорь, установленный на центральной оси между двух параллельно расположенных магнитопроводов с обмотками управления, перемыкатель с подвижными контактами, связанный с якорем, и неподвижные контакты. Якорь выполнен симметричным, с диаметральным размещением в его пазах постоянных магнитов, выполненных из магнитотвердого материала с высокой коэрцитивной силой и намагниченных в направлении по касательной к окружности поворота якоря. Перемыкатель размещен на центральной оси. 5 ил.

Изобретение относится к электромагнитному приводу (10) электрического выключателя (20), в частности электрического силового выключателя, содержащему по меньшей мере один подвижный якорь (60), который может совершать в заданном направлении (Р) перемещения возвратно-поступательное движение, соединяется косвенно или непосредственно с подвижным коммутирующим контактом (21) выключателя (20) и в замкнутом положении (61) замыкает магнитные контуры (М1, М2) привода (10) на первой упорной поверхности (62) якоря (60) с первым магнитопроводящим ярмом (100) привода и на второй упорной поверхности (63) якоря (60) – со вторым магнитопроводящим ярмом (105) привода (10), по меньшей мере один постоянный магнит (90, 95), вырабатывающий магнитное поле для магнитного контура (М1, М2) и удерживающую силу для удержания якоря (60) в замкнутом положении (61), и по меньшей мере одну катушку (80), расположенную таким образом, что она может вырабатывать магнитный поток за счет протекания тока через нее, попутный или встречный магнитному потоку постоянного магнита (90, 95) в магнитном контуре (М1, М2), причем после сборки электромагнитный привод (10) обеспечивает состояние подрегулирования за счет того, что благодаря магнитной силе постоянного магнита (90, 95) возможно саморегулирование положений первого и второго ярм (100, 105) по отношению друг к другу, и причем оба ярма (100, 105) могут быть приведены в прочно собранное положение за счет того, что они фиксированно ориентированы независимо от дальнейшего позиционирования якоря (60). 2 н. и 8 з.п. ф-лы, 7 ил.
Наверх