Способ дистанционного обнаружения вещества

Изобретение относится к радиотехническим средствам, использующим магнитный резонанс для поиска и обнаружения преимущественно наркотиков и взрывчатых веществ, а также поляризационную селекцию и фазовый анализ для поиска и обнаружения наркотиков, упакованных в неметаллическую оболочку. Способ дистанционного обнаружения вещества заключается в дистанционном возбуждении электромагнитной волной магнитного резонанса в веществе и с последующим измерением частоты отклика, при этом возбуждающий электромагнитный сигнал излучают на частоте, много большей частоты магнитного резонанса вещества, и модулируют излучаемый возбуждающий электромагнитный сигнал по поляризации на частоте магнитного резонанса, а отклик регистрируют на частоте модуляции. Электромагнитное зондирование осуществляют плоскополяризованным сигналом и прием сигналов с правой и левой круговой поляризацией, отраженных от наркотического вещества, при этом отраженный сигнал с правой круговой поляризацией стробируют по времени, пропорциональному глубине залегания наркотического вещества, а отраженный сигнал с левой круговой поляризацией преобразуют по частоте с использованием напряжения гетеродина, выделяют напряжение промежуточной частоты, перемножают его с отраженным сигналом с правой круговой поляризацией, выделяют гармоническое напряжение на стабильной частоте гетеродина, измеряют сдвиг фаз между отраженными сигналами с правой и левой круговой поляризацией на стабильной частоте гетеродина, сравнивают измеренное значение сдвига фаз с эталонным значением и по результату сравнения принимают решение о наличии наркотического вещества в укрывающей среде. Технический результат: повышение достоверности обнаружения и разрешающей способности по глубине при определении местоположения наркотических веществ. 1 ил.

 

Предлагаемый способ относится к физическим измерениям, а именно к радиотехническим средствам, использующим магнитный резонанс для поиска и обнаружения преимущественно наркотиков и взрывчатых веществ в составе предъявленных для исследования веществ, а также поляризационную селекцию и фазовый анализ для поиска и обнаружения наркотиков, упакованных в неметаллическую оболочку и находящихся в укрывающих средах, например в брюшной полости человека, используемого для транспортировки наркотических средств, багаже, чемоданах, дипломатах, сумках и т.п., и может найти применение в аэропортах, таможенных терминалах, блокпостах, автопарковках и т.п.

Известны способы дистанционного обнаружения вещества (патенты РФ №№2.128.832, 2.148.817, 2.150.105, 2.161.300, 2.165.104, 2.179.716, 2.185.614, 2.226.686, 2.244.942, 2.249.202; патенты США №№4.756.866, 5.986.455, 6.194.898, 6.392.408; патенты Великобритании №№2.159.626, 2.254.923, 2.289.344, 2.293.885; Гречишкин В.Д. и др. Локальный ЯКР в твердых телах. Успехи физических наук. 1993, т.163, №10 и др.).

Из известных способов наиболее близким к предлагаемому является «Способ дистанционного обнаружения вещества» (патент РФ №2.244.942, G01R 33/20, 2003), который и выбран в качестве прототипа.

Указанный способ основан на дистанционном обнаружении вещества с использованием дистанционного возбуждения электромагнитной волной магнитного резонанса в веществе и с последующим измерением частоты отклика, по наличию которого делают заключение о наличии данного вещества, при этом возбуждающий электромагнитный сигнал излучают на частоте, много большей частоты магнитного резонанса подлежащего обнаружению вещества, и модулируют излучаемый возбуждающий электромагнитный сигнал по поляризации на частоте магнитного резонанса, а отклик регистрируют на частоте модуляции.

Однако известный способ не полностью реализует свои потенциальные возможности, он может использовать поляризационную селекцию и фазовый анализ для поиска и обнаружения наркотиков, упакованных в неметаллическую оболочку и находящихся в укрывающих средах, например в брюшной полости человека, используемого для транспортировки наркотических средств, багаже, сумках, чемоданах, дипломатах и т.п.

Технической задачей изобретения является расширение функциональных возможностей способа путем поиска и обнаружения наркотиков, упакованных в неметаллическую оболочку и находящихся в укрывающих средах, например в брюшной полости человека, используемого для транспортировки наркотических средств, багаже, сумках, чемоданах, дипломатах и т.п.

Поставленная задача решается тем, что согласно способа дистанционного обнаружения вещества с использованием дистанционного возбуждения электромагнитной волной магнитного резонанса в веществе и с последующим измерением частоты отклика, по наличию которого делают заключение о наличии данного вещества, при этом возбуждающий электромагнитный сигнал излучают на частоте, много большей частоты магнитного резонанса подлежащего обнаружению вещества, и модулируют излучаемый возбуждающий электромагнитный сигнал по поляризации на частоте магнитного резонанса, а отклик регистрируют на частоте модуляции, осуществляют электромагнитное зондирование предполагаемого места закладки наркотического вещества плоскополяризованным сигналом и прием сигналов с правой и левой круговой поляризацией, отраженных от наркотического вещества, находящегося в укрывающей среде, при этом отраженный сигнал с правой круговой поляризацией стробируют по времени, пропорциональном глубине залегания наркотического вещества, а отраженный сигнал с левой круговой поляризацией преобразуют по частоте с использованием напряжения гетеродина, выделяют напряжение промежуточной частоты, перемножают его с отраженным сигналом правой круговой поляризации, выделяют гармоническое напряжение на стабильной частоте гетеродина, измеряют сдвиг фаз между отраженными сигналами с правой и левой круговой поляризацией на стабильной частоте гетеродина, сравнивают измеренное значение сдвига фаз с эталонным значением и по результату сравнения принимают решение о наличии наркотического вещества в укрывающей среде.

Структурная схема устройства, реализующего предлагаемый способ, представлена на чертеже.

Устройство содержит последовательно включенные генератор 3 импульсов, управляющий вход которого соединен с первым выходом синтезатора 4, передатчик 2, управляющий вход которого соединен с вторым выходом синхронизатора 4, и передающую антенну 1, последовательно включенные первую приемную антенну 5, первый приемник 6, управляющий вход которого соединен с третьим выходом синхронизатора 4, накопитель 7, управляющий вход которого соединен с третьим выходом синхронизатора 4, и блок регистрации 22, последовательно включенные вторую приемную антенну 13, второй приемник 14, управляющий вход которого соединен с третьим выходом синхронизатора 4, смеситель 15, второй вход которого соединен с выходом гетеродина 16, усилитель 17 промежуточной частоты, перемножитель 18, узкополосный фильтр 19, фазовый детектор 20, второй вход которого соединен с выходом гетеродина 16, и блок 21 сравнения, выход которого соединен с вторым входом блока 22 регистрации, последовательно подключенные к четвертому выходу синхронизатора 4 блок 11 временной задержки и ключ 12, второй вход которого соединен с выходом второго приемника 6, а выход подключен к второму входу перемножителя 18.

Передающая антенна 1, приемные антенны 5 и 13 образуют антенный блок 10. Кроме того, устройство содержит исследуемое вещество 8 и наркотическое вещество 9, помещенное в укрывающую среду. Передатчик 2, приемники 6 и 14 снабжены поляризаторами.

Предлагаемый способ реализуется следующим образом.

Устройство, реализующее предлагаемый способ, может работать в двух режимах.

Первый режим основан на дистанционном возбуждении электромагнитной волной магнитного резонанса в исследуемом веществе с последующим измерением частоты отклика.

Второй режим основан на электромагнитном радиолокационном зондировании плоскополяризованной волной предполагаемого места закладки наркотического вещества, упакованного в неметаллическую оболочку и размещенного в укрывающей среде, с последующим измерением сдвига фаз между двумя отраженными составляющими, которые в общем случае имеют эллиптическую поляризацию с противоположными направлениями вращения вектора электромагнитного поля.

В первом режиме импульсы с частотой заполнения W1 и {W1-W), формируемые в генераторе 3 импульсов, поступают на передатчик 2 и излучаются передающей антенной 1 в направлении исследуемого вещества 8. Последнее может располагаться, например, на теле человека под его одеждой. Передающая 1 и приемные 5, 13 антенны выполнены, например, в виде рупорных антенн, которые снабжены поляризаторами. Сигнал на передающую антенну 1 поступает с круглого волновода, на который в свою очередь с передатчика 2 подаются две ортогональные (по поляризации) составляющие, одна на частоте W1, а другая - на частоте (W1-W), в результате чего излучаемая антенной 1 волна будет модулирована по поляризации с частотой магнитного резонанса W.

Исследуемое вещество 8, облученное электромагнитной волной, содержащей составляющую на частоте магнитного резонанса W, возбуждается и по окончании импульса облучения излучает сигнал отклика на этой же частоте. Сигнал отклика принимается приемной антенной 5, содержащей четыре ферритовых стержня диаметром 8 мм и длиной 138 мм, при этом на стержни намотаны катушки индуктивности, содержащие по 20 витков и соединенные параллельно. Работой устройства управляет синхронизатор 4.

Сигнал с приемной антенны 5 поступает на приемник 6, на который поступает также опорное напряжение с выхода синхронизатора 4, запирающее приемник 6 на время излучения импульсов. С выхода приемника 6 сигнал поступает на накопитель 7, где сигналы постепенно накапливаются, что позволяет увеличить дальность от приемной антенны 5 до исследуемого вещества 8 в 2-3 раза. На накопитель 7 поступает также опорное напряжение, обеспечивающее синхронизацию накапливаемых импульсов.

В случае модуляции по поляризации излучаемого сигнала с частотой W, равной частоте магнитного резонанса исследуемого вещества 8, при частоте излучаемого сигнала W1≫W, вектор напряженности магнитного поля излучаемого электромагнитного сигнала содержит составляющую:

Исследуемое вещество 8 будет активно взаимодействовать с магнитным полем на частоте W (Дудкин В.И., Пахомов Л.Н. Основы квантовой электроники. СПб-ГТУ, 2001). Поскольку частота W1 может быть выбрана достаточно высокой W1≫W, то в этом случае реализации передающая антенна 1 может быть осуществлена, например, с помощью техники антенн сверхвысоких частот (СВЧ), на которую модулированный по поляризации сигнал поступает из круглого волновода, на который в свою очередь поступают две линейно-поляризованные ортогональные волны и , частоты которых равны соответственно W1 и (W1-W).

Переход на частоту возбуждающего излучения в диапазоне СВЧ позволяет обеспечить «дальнюю зону» для излучаемого электромагнитного сигнала уже при дальности в несколько десятков сантиметров. В результате на расстояниях порядка нескольких метров от излучателя обеспечивается уровень электромагнитного излучения, достаточный для возбуждения резонанса в веществе.

Во втором режиме генератор 3 импульсов формирует зондирующий сигнал

U1(t)=V1·Cos(W1·t+ϕ1), 0≤t≤Т1,

где V1, W1, ϕ1, T1 - амплитуда, несущая частота, начальная фаза и длительность сигнала (импульса),

который поступает на вход передатчика 2, где он приобретает плоскую поляризацию. Указанный сигнал через передающую антенну 1 излучается в направлении поверхности укрывающей среды, под которой может находиться наркотическое вещество 9.

Обнаружение наркотических веществ в окружающих средах осуществляется оператором путем перемещения антенного блока 10 над предполагаемым местом закладки наркотического вещества 9. При этом в укрывающей среде создается электромагнитное поле путем его электромагнитного зондирования. При достижении зондирующим сигналом наркотического вещества происходит его частичное отражение в сторону поверхности укрывающей среды.

Когда плоскополяризованная электромагнитная волна отражается от наркотического вещества 9, на которое воздействует внешнее магнитное поле Земли, то она разделяется на две независимые составляющие, которые в общем случае имеют эллиптическую поляризацию с противоположными направлениями вращения вектора электромагнитного поля. На частотах дециметрового диапазона обе составляющие имеют круговую поляризацию. Наркотическое вещество 9 имеет отличные от укрывающей среды электрические параметры (проводимость и диэлектрическую проницаемость).

Обе волны отражаются и распространяются с различными скоростями, вследствие чего фазовые соотношения между этими волнами изменяются. Это явление обычно называют эффектом Фарадея, из-за которого отраженный сигнал испытывает вращение плоскости поляризации. Угол поворота плоскости поляризации, который определяется разной скоростью распространения и отражения сигналов с правой и левой круговой поляризацией от наркотического вещества, находится из соотношения:

δZ=1/2(ϕпл),

где ϕп, ϕл - фазовые запаздывания отраженных сигналов с правой (вращение плоскости поляризации по часовой стрелке) и левой (вращение плоскости поляризации против часовой стрелки) круговой поляризации соответственно.

Отраженный сигнал улавливается приемными антеннами 5 и 13. При этом приемная антенна 5 восприимчива только к отраженному сигналу с правой круговой поляризацией, а приемная антенна 13 - только к отраженному сигналу с левой круговой поляризацией.

На выходе приемников 6 и 14 образуются следующие сигналы:

Uп(t)=Vп·Cos[(W1±ΔW)·t+ϕп],

Uл(t)=Vл·Cos[(W1±ΔW)·t+ϕл], 0≤t≤Т1,

где индексы "п" и "л" относятся соответственно к сигналам с правой и левой круговой поляризацией;

±ΔW - нестабильность несущей частоты, обусловленная некогерентным отражением и другими дестабилизирующими факторами.

Сигнал Uп(t) с выхода приемника 6 через ключ 12 поступает на первый вход перемножителя 18. Чтобы измеряемая разность фаз соответствовала глубине h залегания наркотического вещества 9, перемножитель 18 стробируется по времени с помощью ключа 12, на управляющий вход которого поступают стробирующие импульсы, формируемые блоком 11 временной задержки. Последний управляется синхронизатором 4. Временная задержка импульсов определяется глубиной h залегания наркотического вещества 9 в укрывающей среде. При изменении глубины меняется и время задержки.

Отраженный сигнал Uл(t) с выхода приемника 14 поступает на первый вход смесителя 15, на второй вход которого подается напряжение гетеродина 16:

Uг(t)=Vг·Cos(Wг·t+ϕг).

На выходе смесителя 15 образуются напряжения комбинационных частот. Усилителем 17 выделяется напряжение промежуточной (разностной) частоты:

Uпр(t)=Vпр·Cos[(Wпр±ΔW)·t+ϕпр], 0≤t≤Т1,

где Vпр=1/2K1·Vл·Vг,

К1 - коэффициент передачи смесителя;

Wпр=W1-Wг - промежуточная частота;

ϕпрлг,

которое поступает на второй вход перемножителя 18. На выходе последнего образуется гармоническое напряжение:

U2(t)=V2·Cos(Wг·t+ϕг+Δϕ), 0≤t≤Т1,

где V2=1/2К2·Vп·Vпр;

K2 - коэффициент передачи перемножителя;

Δϕ=ϕпл - разность фаз между отраженными сигналами с правой и левой круговой поляризацией,

которое выделяется узкополосным фильтром 19 и поступает на первый вход фазового детектора 20, на второй вход которого подается напряжение гетеродина Uг(t). На выходе последнего образуется низкочастотное напряжение:

Uн(Δϕ)=Vн·CosΔϕ,

где Vн=1/2К3·V2·Vг;

К3 - коэффициент передачи фазового детектора, пропорциональное измеряемому сдвигу фаз Δϕ. Это напряжение сравнивается в блоке 21 сравнения с эталонным напряжением.

Uэ(Δϕэ)=Vэ·CosΔϕэ,

где Δϕэ - неизменяемый фазовый сдвиг, получаемый при зондировании укрывающей среды при отсутствии наркотического вещества 9.

Сдвиг фаз Δϕэ определяется частотой зондирующего сигнала и электрическими параметрами укрывающей среды. Этот сдвиг фаз остается неизменным при зондировании укрывающейся среды в отсутствие наркотических средств.

Если Uн(Δϕ)≈Uэ(Δϕэ), то в блоке 21 сравнения не формируется постоянное напряжение.

При Uн(Δϕ)>Uэ(Δϕэ) в блоке 21 сравнения формируется постоянное напряжение, которое поступает на второй вход блока 22 регистрации. Причем факт регистрации этого напряжения свидетельствует о наличии наркотического вещества в данной укрывающей среде.

Таким образом, предлагаемый способ по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает поиск и обнаружение наркотических веществ, упакованных в неметаллическую оболочку и находящихся в укрывающих средах, например в брюшной полости человека, используемого для транспортировки наркотических средств, багаже, чемоданах, дипломатах, сумках и т.п.

При этом предлагаемый способ позволяет повысить достоверность поиска и обнаружения и разрешающую способность по глубине при определении местоположения наркотических веществ, находящихся в укрывающих средах. Это достигается за счет использования поляризационной селекции и устранения неоднозначности фазовых измерений, что обеспечивается тем, что фазовые измерения осуществляются между отраженными сигналами с правой и левой круговой поляризацией, а не между зондирующим и отраженным сигналами. При этом фазовый сдвиг между отраженными сигналами с правой и левой круговой поляризацией измеряется на стабильной частоте Wг гетеродина. Поэтому процесс измерения фазового сдвига Δϕ инвариантен к нестабильности несущей частоты отраженного сигнала, возникающей при некогерентном отражении сигнала от наркотического вещества и других дестабилизирующих факторах, что позволяет повысить точность измерения фазового сдвига Δϕ и, следовательно, и точность определения местоположения наркотических веществ. Тем самым функциональные возможности способа расширены.

Способ дистанционного обнаружения вещества с использованием дистанционного возбуждения электромагнитной волной магнитного резонанса в веществе и с последующим измерением частоты отклика, по наличию которого делают заключение о наличии данного вещества, при этом возбуждающий электромагнитный сигнал излучают на частоте, много большей частоты магнитного резонанса подлежащего обнаружению вещества, и модулируют излучаемый возбуждающий электромагнитный сигнал по поляризации на частоте магнитного резонанса, а отклик регистрируют на частоте модуляции, отличающийся тем, что осуществляют электромагнитное зондирование предполагаемого места закладки наркотического вещества плоскополяризованным сигналом и прием сигналов с правой и левой круговой поляризацией, отраженных от наркотического вещества, находящегося в укрывающей среде, при этом отраженный сигнал с правой круговой поляризацией стробируют по времени, пропорциональному глубине залегания наркотического вещества, а отраженный сигнал с левой круговой поляризацией преобразуют по частоте с использованием напряжения гетеродина, выделяют напряжение промежуточной частоты, перемножают его с отраженным сигналом правой круговой поляризацией, выделяют гармоническое напряжение на стабильной частоте гетеродина, измеряют сдвиг фаз между отраженными сигналами с правой и левой круговой поляризацией на стабильной частоте гетеродина, сравнивают измеренное значение сдвига фаз с эталонным значением и по результату сравнения принимают решение о наличии наркотического вещества в укрывающей среде.



 

Похожие патенты:

Изобретение относится к медицине, а именно к способам для диагностики путем регистрации биоэлектрических сигналов организма и его частей, а также к способам для исследования материала путем обнаружения и исследования магнитных полей рассеяния, и могут быть использованы в ортопедической стоматологии для определения податливости слизистой оболочки протезного ложа.

Изобретение относится к физическим измерениям, а именно к радиотехническим средствам, использующим магнитный резонанс, для поиска и обнаружения преимущественно наркотиков и взрывчатых веществ в составе предъявленных для исследования веществ.

Изобретение относится к физическим измерениям, а именно к радиотехническим средствам, использующим магнитный резонанс для поиска, обнаружения и идентификации веществ.

Изобретение относится к исследовательским устройствам с ядерным магнитным резонансом (ЯМР). .

Изобретение относится к физическим измерениям, а именно к радиотехническим средствам, использующим магнитный резонанс для поиска и обнаружения преимущественно наркотиков и взрывчатых веществ в составе предъявленных для исследования веществ.

Изобретение относится к области измерения постоянного и переменного магнитных полей. .

Изобретение относится к области устройств для медицинской диагностики, а именно к магнитно-резонансным томографам. .

Изобретение относится к геофизическим методам исследований скважин, в частности к ядерно-магнитному каротажу. .

Изобретение относится к резонансной радиоспектроскопии и предназначено для контроля и поддержания заданной температуры в объеме исследуемого образца, в частности в эксперименте по измерению времен магнитной релаксации методом ядерного магнитного резонанса

Изобретение относится к физическим измерениям, а именно к радиотехническим средствам, использующим магнитный резонанс для обнаружения и идентификации преимущественно наркотических и взрывчатых веществ

Изобретение относится к физическим измерениям, использующим магнитный резонанс для поиска и обнаружения преимущественно наркотиков и взрывчатых веществ

Изобретение относится к радиотехническим средствам, использующим магнитный резонанс для поиска и обнаружения преимущественно наркотиков и взрывчатых веществ в составе предъявленных для исследования предметов, а также поляризационную селекцию и фазовый анализ для поиска и обнаружения наркотиков, упакованных в неметаллическую оболочку и находящихся в укрывающих средах, например в брюшной полости человека, используемого для транспортировки наркотических средств, багаже, чемоданах, дипломатах, сумках и т.п., и может найти применение в аэропортах, таможенных терминалах, блокпостах, автопарковках и т.п

Изобретение относится к области эксплуатации нефтяных месторождений, конкретно к оптимизации разработки залежей вязких и высоковязких нефтей на основе систематических промыслово-геофизических исследований пластовой продукции посредством импульсной методики и техники ядерного магнитного резонанса (ЯМР) в сильном магнитном поле [1]

Использование: для обнаружения воспаления или инфекции. Сущность изобретения заключается в том, что обнаружение воспаления или инфекции выполняют путем 13С-МР томографии, 13С-МР спектроскопии и/или 13С-МР спектроскопической томографии, при котором используют визуализирующую среду, содержащую гиперполяризованный 13С-пируват, и воспаление или инфекцию определяют по высокой интенсивности 13С-сигнала от 13С-лактата или по повышенной скорости образования 13С-лактата. Технический результат: обеспечение возможности обнаружения очагов воспаления или инфекции с высокой степенью достоверности. 4 н. и 7 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к нанотехнологиям и может быть использовано в области разработки материалов на основе алмаза для магнитометрии, квантовой оптики, биомедицины, а также в информационных технологиях, основанных на квантовых свойствах спинов и одиночных фотонов. Способ определения ориентации NV дефектов в кристалле алмаза включает помещение образца кристалла алмаза во внешнее магнитное поле, воздействие на образец микроволновым излучением, облучение рабочего объема образца сфокусированным лазерным излучением, возбуждающим в рабочем объеме образца фотолюминесценцию, по которой регистрируют сигнал оптически детектируемого магнитного резонанса (ОДМР), который создают путем развертки частоты микроволнового излучения и модуляции внешнего магнитного поля. Измеряют спектры ОДМР NV дефекта в кристалле алмаза при разных ориентациях кристалла алмаза относительного внешнего магнитного поля. Сравнивают полученные зависимости линий ОДМР с рассчитанными положениями линий NV дефекта в кристалле алмаза в магнитном поле. Затем определяют ориентацию NV дефекта по величине отклонения положения линий NV дефекта от рассчитанных положений линий. Способ является простым по выполнению и не требует использования сложного устройства. 3 ил., 2 пр.

Изобретение относится к области радиосвязи. Отличительной особенностью заявленного устройства исследования электромагнитного поля вторичных излучателей является введение коммутатора передающих антенн, коммутатора приемо-передающих антенн, приемо-передающей антенной системы, двух передающих антенн для создания вертикальной составляющей, двух передающих антенн для создания горизонтальной составляющей, адаптивного преобразователя, формирователя информации излучения вторичных излучателей, преобразователя частотного спектра, блока фильтров, блока анализа спектра излучения, блока исследования спектра вторичного излучения. Техническим результатом является автоматизация анализа частотных свойств поля вторичного излучения исследуемых объектов и их уровней, увеличение чувствительности устройства введением адаптивной обработки сигналов вторичных излучателей. 17 з.п. ф-лы, 22 ил.
Наверх