Способ контроля и управления сгорания топлива в двс и ионизационный датчик для его осуществления

Изобретение относится к системам контроля и управления процессами воспламенения и сгорания топлива, конкретно к системам контроля и управления процесса сгорания углеводородного топлива в камерах сгорания ДВС. Система для реализации способа контроля и управления сгоранием топлива содержит: камеру сгорания, поршень, свечу зажигания, металлический стержень - положительный электрод, изолированный от камеры сгорания - отрицательного электрода электронной системой управления двигателем (ЭСУД), и форсунки подачи топлива. Ионизационный датчик содержит отрицательный электрод - камеру сгорания и положительный электрод - металлический стержень, изолированный от камеры сгорания и установленный в зоне, наиболее удаленной от свечи зажигания. Величина ионного тока, характеризующая интенсивность выгорания ТВС, сравнивается с величиной ионного тока при α=1 и, если отношение величин тока выходит за пределы 0,6-0,75, выдается команда на изменение расхода топлива через форсунку. Для осуществления предлагаемого способа контроля и управления сгоранием топлива ионизационный датчик установлен в наиболее удаленной от свечи зажигания зоне камеры сгорания. Так как измерение ионного тока пламени и сравнение замеряемого тока с величиной ионного тока при α=1 производится непрерывно во все время работы ДВС, то в любой момент времени имеется информация о динамике выгорания ТВР вблизи стенки камеры сгорания, удаленной от свечи зажигания. Вследствие того, что скорость передачи информации о динамике выгорания определяется скоростью перемещения электронов в пламени, то результаты измерения и сравнения величин тока отражают динамику выгорания практически мгновенно, что дает возможность эффективно контролировать рабочий процесс с целью обеспечения минимальной токсичности выхлопа двигателя. Техническим результатом является обеспечение минимальной концентрации несгоревших углеводородов в отработавших газах поршневых двигателях внутреннего сгорания. 2 н. и 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к системам контроля и управления процессами воспламенения и сгорания топлива, конкретно к системам контроля и управления процесса сгорания углеводородного топлива в камерах сгорания ДВС.

К настоящему времени для контроля воспламенения и сгорания топлива в топках металлургических печей, котельных установок, в форсажных камерах сгорания турбореактивных двигателей широко применяются системы, работа которых основана на измерении ионного тока пламени и сравнении замеренной величины с эталонным значением тока [1, 2, 3]. Появление ионного тока в пламени регистрируется практически мгновенно, а изменение его величины отражает изменение параметров горения - давления, температуры, турбулентности, состава смеси, степени его завершенности.

Для измерения ионного тока в пламени наиболее часто применяются ионизационные датчики, в которых одним из электродов является изолированный от камеры сгорания металлический стержень, а вторым - масса камеры сгорания. Ионизационные датчики такого типа в системах автоматического контроля и управления процессов воспламенения и горения представлены на рис.158, 159 и 160 [1], стр.260-264 [2] и в [3].

Обсуждаемые способы содержат следующие операции: одновременно подается электрическое напряжение на электроды ионизационного датчика и на свечи зажигания запального устройства. Затем подается топливо и воздух или топливно-воздушная смесь (ТВС) в камеру сгорания или топку. Воспламенение ТВС приводит к формированию факела пламени. Пламя, омывая электроды ионизационного датчика, замыкает электрическую цепь, в которой возникает электрический ток, что свидетельствует о нормальном воспламенении и горении. При исчезновении ионного тока в электрической цепи датчика его цепь размыкается и проходит сигнал на прекращение подачи топлива.

Основным недостатком рассмотренных способов и устройств является то, что они надежно и эффективно определяют наличие воспламенения и горения в камерах сгорания и топках, работающих при постоянном давлении, температуре, скорости и турбулентности потока ТВС и требуют новых разработок для применения таких систем с целью контроля и управления сжиганием топлива при минимальной токсичности отработавших газов (ОГ).

В условиях поршневых ДВС, когда воспламенение и сгорание топливно-воздушного заряда (ТВР) протекает в течение нескольких миллисекунд при меняющихся скоростях и турбулентности, изменении температуры ˜ в 4 раза, давления ˜ в 3,5-5 раз в настоящее время в качестве ионизационного датчика пытаются применять свечу зажигания [4, 5, 6]. При этом работы ведутся в направлении определения по изменению ионного тока состава смеси, протекания давления в камере сгорания и концентрации оксида азота.

Основным недостатком применения свечи зажигания в качестве ионизационного датчика является то, что ионный ток измеряется в небольшом объеме вблизи ее электродов [1, 2, 3]. В этом случае контроль протекания химических реакций сгорания возможен лишь в момент воспламенения и первоначальный период распространения пламени, пока пламя омывает электроды ионизационного датчика - это первый пик ионного тока, хемиионизация. Затем величина ионного тока снижается и к окончанию процесса сгорания появляется второй пик, так называемый постпламенный, обусловленный термоионизацией. И если по характеру протекания и изменению величины первого и второго пика ионного тока можно судить о составе смеси, давлении и концентрации оксида азота, то о контроле концентрации несгоревших углеводородов (СН) по этим сигналам судить невозможно.

Считается общеизвестным [7], что концентрация несгоревших углеводородов определяется главным образом степенью завершенности химических реакций сгорания вблизи стенок камеры сгорания.

Целью изобретения является обеспечение минимальной концентрации несгоревших углеводородов в отработавших газах поршневых двигателях внутреннего сгорания.

Указанная цель достигается тем, что в известном способе контроля и управления сгоранием топлива, включающем измерение и сравнение с эталонным значением ионного тока в пламени и регулирование подачи топлива, измерение и сравнение между собой величин ионного тока производят в зоне завершения сгорания топлива, поддерживая соотношение величины измеренного ионного тока к величине ионного тока при коэффициенте избытка воздуха α, равном единице, в диапазоне 0,6-0,75. При отношении величины измеренного ионного тока к величине ионного тока при коэффициенте избытка воздуха α, равном единице, большем 0,75, необходимо увеличение подачи топлива, а при значениях, меньших 0,6, - уменьшение количества топлива.

Для осуществления предлагаемого способа контроля и управления сгоранием топлива в известном ионизационном датчике, содержащем изолированные друг от друга электроды, один из которых, отрицательный, - камера сгорания двигателя, второй, положительный, - изолированный от камеры сгорания металлический стержень, установлен в наиболее удаленной от свечи зажигания зоне камеры сгорания.

Так как измерение ионного тока пламени и сравнение замеряемого тока с величиной ионного тока при α=1 производится непрерывно во все время работы ДВС, то в любой момент времени имеется информация о динамике выгорания ТВР вблизи стенки камеры сгорания, удаленной от свечи зажигания. В настоящее время считается общеизвестным, что концентрация несгоревших углеводородов в ОГ поршневых ДВС определяется главным образом динамикой выгорания в тонком слое у стенок камеры сгорания.

Вследствие того, что скорость передачи информации о динамике выгорания определяется скоростью перемещения электронов в пламени, то результаты измерения и сравнения величин тока отражают динамику выгорания практически мгновенно.

Следовательно, способ контроля и управления сгоранием топлива и ионизационный датчик для его осуществления соответствует критерию изобретения «новизна».

Сравнение решения не только с прототипом, но и с другими техническими решениями в данной области техники позволило выявить в них признаки, отличающие заявляемое решение от прототипа, что позволяет сделать вывод о соответствии критерию «изобретательский уровень».

На фиг.1 показана схема системы для реализации предлагаемого способа контроля и управления сгоранием топлива и ионизационного датчика для его осуществления, на фиг.2 - экспериментальная зависимость концентрации несгоревших углеводородов от соотношения измеряемой величины ионного тока к ионному току при коэффициенте избытка воздуха, равном единице.

Система для реализации способа контроля и управления сгоранием топлива, как показано на фиг.1, содержит камеру сгорания 1, поршень 2, свечу зажигания 3, металлический стержень 4 - положительный электрод, изолированный от камеры сгорания - отрицательного электрода электронной системой управления двигателем (ЭСУД), и форсунки 6 подачи топлива.

Ионизационный датчик, см. фиг.1 содержит отрицательный электрод - камеру сгорания 1 и положительный электрод - металлический стержень 4, изолированный от камеры сгорания и установленный в зоне, наиболее удаленной от свечи зажигания 3.

Пример работы: при приближении днища поршня 2 к верхней мертвой точке на свечу зажигания 3 подается электрическое питание высокого напряжения и между электродами свечи проскакивает электрическая искра, воспламеняющая топливно-воздушную смесь в объеме вокруг электродов свечи. От воспламенившегося объема пламя распространяется по свежей ТВС в камере сгорания. В процессе завершения сгорания фронт пламени, достигнув положительного электрода - металлического стержня 4, замыкает электрическую цепь между электродами ионизационного датчика, камерой сгорания 1 и металлическим стержнем 4, в которой появляется ионный ток. Величина ионного тока, характеризующая интенсивность выгорания ТВС, сравнивается в ЭСУД с величиной ионного тока при α=1 и, если отношение величин тока выходит за пределы 0,6-0,75, ЭСУД выдает команду на изменение расхода топлива через форсунку 6.

Проведенные экспериментальные исследования на одноцилиндровой установке ДВС и на двигателе ВА3-1111 подтвердили, см. фиг.2, что применение предлагаемого способа контроля и управления сгоранием топлива и ионизационного датчика для его осуществления позволяют обеспечить сжигание топлива при минимальной концентрации несгоревших углеводородов в ОГ ДВС.

Разработана документация для изготовления ионизационного датчика и системы контроля и управления для ее опытной эксплуатации в условиях экспериментального двигателя.

Литература:

1. Степанов Е.М., Дьячков Б.Г. Ионизация в пламени и электрическое поле. М.: Металлургия, 1968.

2. Лаутон Д.Ж. Электрические аспекты горения. М.: Энергия, 1976.

3. Шайкин А.П., Русаков М.М., Егоров А.Г. и др. Способ контроля и управления сжиганием топлива и ионизационный датчик для его осуществления. Патент на изобретение РФ №2096690, Бюл. №32.

4. R.Reinmann, A.Saitzkoff, F.Mauss, "Local Air-Fuel Ratio Measurements Using the Spark Plug as an lonisation Sensor", SAE Paper No 970856, 1997.

5. A.Saitzkoff, R.Reinmann, F.Mauss, M.Glavmo, "In-Cylinder Pressure Measurements Using the Spark Plug as an lonisation Sensor", SAE Paper No 970857, 1997.

6. Gerard W. Malaczynski and Michael E. Baker, "Real-Time Digital Signal Processing of lonization Current for Engine Diagnostic and Control", SAE Paper No 2003-03-1119.

7. Образование и разложение загрязняющих веществ в пламени: Пер. с англ./Ред. Н.А.Чигир. - М.: Машиностроение, 1981. - 497 с., ил, с.277-285.

1. Способ контроля и управления сгоранием топлива путем измерения и сравнения с эталонным значением ионного тока в пламени и регулирование подачи топлива, отличающийся тем, что измерение и сравнение между собой величин ионного тока производят в зоне завершения сгорания топлива, поддерживая отношение величины измеренного ионного тока к величине ионного тока при коэффициенте избытка воздуха α, равном единице, в диапазоне 0,6-0,75.

2. Способ контроля и управления сгоранием по п.1, отличающийся тем, что при отношении величины измеренного ионного тока к величине ионного тока при коэффициенте избытка воздуха α, равном единице, большем 0,75, необходимо увеличение подачи топлива, а при значениях меньших 0,6 - уменьшение количества топлива.

3. Ионизационный датчик, содержащий два, изолированных друг от друга электрода, одним из которых является камера сгорания двигателя, отличающийся тем, что, с целью измерения ионного тока в зоне завершения сгорания топлива, второй электрод, изолированный от камеры сгорания металлический стержень, устанавливается в наиболее удаленной от свечи зажигания зоне камеры сгорания.



 

Похожие патенты:

Изобретение относится к системе для генерирования энергии, в которой электроэнергия генерируется за счет энергии искусственно созданного непрерывного вихревого восходящего потока.

Изобретение относится к теплоэнергетике, огневым технологиям и может найти широкое применение в теплоэнергетических установках (котельные, домны и т.д.), а также в реактивных и газотурбинных двигателях, использующих также топливные горелки для преобразования тепловой энергии горения топлива в реактивную кинетическую энергию струи пламени и отходящих газов.

Изобретение относится к бытовым газовым плитам, духовые шкафы которых, в частности, оборудованы предохранительными устройствами, перекрывающими подачу газа в случае прекращения горения.

Изобретение относится к контролю процесса горения, в частности к устройствам для защиты котлоагрегата от обрыва факела горелки. .

Изобретение относится к теплоэнергетике и имеет целью повышение качества контроля эрозионных процессов в камерах сгорания с рэдиопрозрачной стенкой. .

Изобретение относится к автоматическому управлению и контролю пламени горелок в башенных печах агрегата непрерывного отжига жести и других теплотехнических агрегатах Устройство содержит трансформатор 1, накопительный конденсатор 2.

Изобретение относится к теплоэнергетике и обеспечивает повышение точности контроля. .

Изобретение относится к средствам диагностики процесса горения в тепловых энергетических установках

Изобретение относится к теплоэнергетике, огневым технологиям и может найти широкое применение в теплоэнергетических установках (котельные, домны и т.д.)

Изобретение относится к системам контроля и управления процесса сгорания углеводородного топлива в камерах сгорания ДВС

Изобретение относится к устройствам для измерения интенсивности пламени

Изобретение относится к области энергетики. Способ зажигания и эксплуатации горелок при газификации углеродосодержащих типов топлива с использованием по меньшей мере двух газификационных горелок заключается в том, что одна из газификационных горелок выполнена в виде пусковой горелки, для зажигания которой служит по меньшей мере одна пилотная горелка, которую зажигают посредством электрического запального элемента, при этом посредством пилотной горелки в пусковой горелке воспламеняют смесь из горючего газа и кислородосодержащего газа, при этом после зажигания пусковой горелки от нее зажигают по меньшей мере одну другую газификационную горелку и пусковую горелку за счет смены среды эксплуатируют далее в качестве одной из газификационных горелок углеродосодержащего топлива. Изобретение позволяет предотвратить непрерывный расход горючего газа в пилотной или же запальной горелке. 5 з.п. ф-лы, 3 ил.

Изобретение относится к энергетике. Способ контроля и управления процессом горения углеводородного топлива в топках котлов и промышленных печей, при котором опытным путем определяют стехиометрическое соотношение горючего и окислителя для данного вида топлива в данной топке; определяют значения абсолютных величин электрических потенциалов в трех зонах пламени факела: зоне подготовки, зоне сгорания и зоне догорания при стехиометрическом соотношении горючего и окислителя и принимают их за эталонные; непрерывно измеряют значения абсолютных величин электрических потенциалов в трех зонах пламени факела и сравнивают их с эталонными, причём по результатам сравнений непрерывно регулируют подачу окислителя в соответствии с полученными показателями. Изобретение позволяет обеспечить полное сгорание углеводородного топлива в топках. 1 ил.

Изобретение относится к области энергетики. Способ для обнаружения и зажигания пламени характеризуется тем, что обеспечивают стержень пламени, причем один конец стержня пламени размещают в месте нахождения пламени горелки; закрывают участок стержня пламени изолятором на заданном расстоянии от указанного конца стержня пламени; определяют наличие пламени на горелке путем обнаружения напряжения на стержне пламени, которое обусловлено областью ионизированного газа пламени; и зажигают горелку искрой на стержне пламени, чтобы инициировать пламя на горелке; при этом изолятор устраняет влияние влажности для предотвращения электрической неисправности стержня пламени, которая делает стержень пламени неспособным обнаруживать напряжение на стержне пламени, вызываемое областью ионизированного газа пламени, или зажигать горелку с помощью искры. Изобретение позволяет противодействовать атмосферным осадкам запальникам, которые обеспечивают обнаружение и зажигание пламени. 3 н. и 12 з.п. ф-лы, 4 ил.

Изобретение относится к системам исследования, контроля и управления процессами воспламенения и сгорания топлива, конкретно к системам исследования процессов воспламенения и сгорания топлива в камерах сгорания двигателей внутреннего сгорания. Для осуществления данного способа разработана следующая методика: вдоль определенного направления движения пламени вычисляют скорость распространения переднего и заднего фронта пламени в основной и заключительной фазах, ширину зоны горения определяют с помощью известных расстояний между изолированными электродами и промежутков времени между появлением и исчезновением ионного тока на этих электродах, интенсивность протекания скоростей химических реакций горения определяют амплитудой ионного тока и временем его существования в сравнении с амплитудой и временем существования ионного тока в цепи соответствующих электродов датчика при сжигании топливно-воздушной смеси (ТВС) стехиометрического состава Техническим результатом является определение основных характеристик сгорания ТВС при проектировании и доводке двигателей нового поколения, обеспечивающих высокую эффективность сгорания ТВС и минимальную концентрацию несгоревших углеводородов в отработавших газах. 2 н.п. ф-лы, 6 ил.

Изобретение относится к системам исследования, контроля и диагностики процесса воспламенения и сгорания топлива, конкретно к системам исследования процесса сгорания топлива в камерах сгорания поршневых двигателей внутреннего сгорания. Устройство измерения, контроля и диагностики процесса сгорания в камере двигателя внутреннего сгорания содержит ионизационный датчик, включающий изолированные друг от друга электроды. Один из электродов, отрицательный, - корпус головки цилиндра. Второй, положительный, - изолированный от головки цилиндра металлический стержень. Второй электрод установлен в отверстии, выполненном в головке цилиндра. Металлический стержень второго электрода покрыт электроизоляционным слоем лака и имеет сферическое утолщение на одном конце. Отверстие в корпусе головки цилиндра снабжено фаской и имеет диаметр, равный диаметру стержня. Устройство содержит прибор фиксации показаний датчика. Технический результат заключается в повышении надежности и долговечности работы системы измерения ионных токов в камере сгорания. 2 з.п. ф-лы, 2 ил.

Изобретение относится к устройству нагрева воды. Устройство содержит горелку и устройство измерения силы тока пламени. Устройство измерения содержит два электрода и источник напряжения, где каждый из полюсов источника напряжения соединен с одним из электродов. Устройство нагрева воды дополнительно содержит теплообменник, который электрически изолирован относительно горелки. Горелка и теплообменник здесь образуют электроды устройства измерения силы тока пламени. Теплообменник, действующий как электрод, может быть заземлен. Измеренная сила тока пламени может быть использована для определения коэффициента избытка воздуха при горении. Устройство нагрева воды может дополнительно содержать регулятор воздух/топливо для регулирования соотношения воздух/топливо, при этом регулятор воздух/топливо использует определенный коэффициент избытка воздуха для регулирования соотношения воздух/топливо. Изобретение также относится к способу измерения силы тока пламени в пламени. Изобретение позволяет повысить надежность обнаружения пламени, обеспечить устойчивость процесса горения. 2 н. и 3 з.п. ф-лы, 4 ил.
Наверх