Система теплоснабжения (варианты)

Изобретение предназначено для систем теплоснабжения жилых, общественных и производственных зданий и промышленного технологического оборудования. Технический результат: снижение тепловых потерь в окружающую среду и уменьшение потребляемой для этого энергии. Система теплоснабжения содержит подающую потребителю тепла и обратную магистрали теплоносителя и размещенную перед потребителем тепла холодильную установку, конденсатор которой включен гидравлически в подающую, а испаритель - в обратную магистраль. Холодильная установка выполнена с несколькими, имеющими разный уровень температуры конденсации хладагента и соединенными последовательно по ходу теплоносителя конденсаторами и с несколькими, имеющими разный уровень температуры кипения хладагента и соединенными последовательно по ходу теплоносителя испарителями. Также описан второй вариант системы. 2 н.п. ф-лы, 2 табл., 2 ил.

 

Область техники

Изобретение предназначено для снижения потерь тепла и уменьшения потребляемой для этого энергии и может быть использовано в системах теплоснабжения жилых, общественных и производственных зданий и промышленного технологического оборудования.

Предшествующий уровень техники

Известны производственные, квартальные и районные системы теплоснабжения, содержащие котельную, размещенную в наружной среде (в грунте или на опорах в воздухе) тепловую сеть, имеющую подающую и обратную магистрали теплоносителя и паропровод.

Недостатком таких систем являются большие потери тепла в окружающую среду (более 50% от получаемой при сжигании топлива тепловой энергии). Это обусловлено высокой температурой теплоносителя в подающей (до 150°С), обратной (до 70°С) магистралях и паропроводе (до 180°С) [1, стр.227-250].

Запасы органического топлива на земле и в ее недрах ограничены. Использование органического и ядерного топлива имеет огромную потенциальную и реальную угрозу для всей биосферы. Экономический эффект только от замещения 1% потребляемого сегодня в России топлива составит более 1 млрд. долларов США [2, стр.50, 51].

Меньшие потери тепла в окружающую среду (менее 50% от получаемой при сжигании топлива тепловой энергии) имеет система теплоснабжения, содержащая теплоэлектроцентраль с теплосиловой установкой, имеющей конденсатор водяного пара, и размещенную в окружающей среде тепловую сеть с подающей и обратной магистралями теплоносителя и паропроводом [3, стр.323-325 (прототип)].

Уменьшение потерь тепла в такой системе обеспечивается благодаря преобразованию в теплосиловой установке части (до 33%) получаемой при сжигании топлива тепловой энергии в электрическую. Коэффициент полезного действия теплосиловых установок большинства действующих электростанций составляет 15...20% [4, стр.93].

Однако и в этой системе потери тепла составляют десятки процентов. При этом уменьшается значение коэффициента полезного действия теплосиловой установки в связи с необходимостью увеличения температуры конденсации водяного пара для обеспечения требуемых параметров теплоносителя в системе теплоснабжения.

Раскрытие изобретения

Задачей, решаемой изобретением, является снижение тепловых потерь в окружающую среду путем охлаждения теплоносителя на входе в обратную магистраль и нагревания на выходе из подающей магистрали с помощью холодильной установки и уменьшения потребляемой для этого энергии.

Для этого в первом варианте система теплоснабжения, содержащая подающую и обратную магистрали теплоносителя, снабжена размещенной перед потребителем тепла холодильной установкой. Конденсатор этой установки включен гидравлически в подающую, а испаритель - в обратную магистраль.

В системе теплоснабжения первого варианта остаются неизменными потери тепла в окружающую среду через паропровод.

Для снижения потерь тепла при доставке пара потребителю и уменьшения потребляемой при этом энергии во втором варианте система теплоснабжения, содержащая подающую потребителю тепла, обратную и подпиточную магистрали теплоносителя, снабжена размещенной перед потребителем тепла и пара холодильной установкой. Конденсатор этой установки включен гидравлически в подающую, а испаритель - в обратную магистраль. Система снабжена дополнительно включенным гидравлически в подающую магистраль на участке между конденсатором холодильной установки и потребителем тепла теплообменником и ответвлением подающей магистрали. Ответвление связано гидравлически с теплообменником через редукционное (дросселирующее) устройство.

Для снижения потребляемой холодильной установкой обоих вариантов системы теплоснабжения мощности холодильная установка выполнена с несколькими, имеющими разный уровень температуры конденсации хладагента и соединенными последовательно по ходу теплоносителя конденсаторами и с несколькими, имеющими разный уровень температуры кипения хладагента и соединенными последовательно по ходу теплоносителя испарителями.

Краткое описание чертежей

На чертежах условно изображены гидравлические схемы системы теплоснабжения:

на фиг.1 показан пример исполнения первого варианта системы теплоснабжения;

на фиг.2 - второго варианта системы теплоснабжения.

Система теплоснабжения содержит, например, конденсатор 1 теплосиловой установки теплоэлектроцентрали (не показана), подающую 2 и обратную 3 магистрали теплоносителя, циркуляционный насос 4, радиаторы 5 системы отопления (не показана) и холодильную установку 6, имеющую, например, три парокомпрессионные холодильные машины 7, 8, 9. Холодильные машины имеют соответственно компрессоры 10, 11 и 12, конденсаторы 13, 14 и 15, терморегулирующие вентили 16, 17 и 18 и испарители 19, 20 и 21. Конденсаторы 13, 14 и 15 имеют разный уровень температуры конденсации хладагента и включены последовательно в магистраль 2. Испарители 19, 20 и 21 имеют разный уровень температуры кипения хладагента и включены последовательно в магистраль 3.

Второй вариант системы дополнительно содержит подпиточную магистраль 22 с насосом 23, включенный в магистраль 2 на участке между конденсатором 15 и радиаторами 5 теплообменник 24 и ответвление 25 магистрали 2 с установленным перед теплообменником 24 регулирующим вентилем 26.

В качестве конденсатора 1 могут быть использованы также производственные, квартальные или районные котельные, естественные или искусственные водоемы, геотермальные воды или теплообменник, установленный в наружном воздухе.

В качестве радиаторов 5 могут быть также использованы теплообменники системы горячего водоснабжения, калориферы системы воздушного отопления или технологическое оборудование по тепловой обработке продукции предприятий, например, пищевой промышленности.

В качестве холодильных машин могут быть также использованы и любые другие, имеющие конденсатор и испаритель.

Количество конденсаторов и испарителей может быть и любым другим.

В качестве регулирующего вентиля 26 может быть использовано и любое другое редукционное (дросселирующее) устройство, обеспечивающее снижение давления и разбрызгивание воды в теплообменнике 24.

При поступлении к конденсатору 1 из магистрали 3 воды с температурой, например, tk1=8°С температура воды на выходе из конденсатора 1 повышается до значения tk2=20°С за счет тепла, выделяемого при конденсации водяного пара в конденсаторе 1 при температуре tk=20°C.

При температуре грунта в зоне размещения магистралей 2 и 3 tгр=10°C температура воды на входе в холодильную установку 6 может составить tвk1=15°С, а на выходе - tво1=3°C. В этом случае теряемое из магистрали 2 в грунт тепло (tk2-tвk1=5°C) компенсируется притоком в магистраль 3 тепла из грунта (tk1-tво1=5°С).

Требуемое значение температуры воды на входе в радиаторы 5 (tв kн=95°С) (фиг.1) или в теплообменник 24 (фиг.2) (tв kн=130°С) обеспечивается путем ступенчатого нагревания ее в конденсаторах 13, 14 и 15 за счет тепла, перекачиваемого холодильными машинами 7, 8 и 9 из магистрали 3 через испарители 19, 20 и 21 от воды с температурой на выходе из радиаторов 5 tв оп=60°C.

В представленном на фиг.2 втором варианте системы теплоснабжения при открывании вентиля 26 вода с температурой 130°С по ответвлению 25 поступает в теплообменник 24. При дросселировании в вентиле 26 вода разбрызгивается в теплообменнике 24 и превращается в пар за счет тепла, поступающего из магистрали 2 через теплопередающую поверхность теплообменника 24. Расход превратившейся в пар воды компенсируется из подпиточной магистрали 22 насосом 23.

Значения температур воды могут быть и любые другие, обеспечивающие требуемый уровень температур в потребителе тепла.

Лучший вариант осуществления изобретения

Лучшим вариантом осуществления изобретения является использование его в составе системы теплоснабжения с теплоэлектроцентралью при температуре воды на входе в конденсатор 1 ниже температуры окружающей магистраль 3 среды и с холодильной установкой, имеющей несколько конденсаторов и испарителей.

При приведенных в описании чертежей значениях температур воды потери тепла через магистраль 2 компенсируются теплопритоками в магистраль 3. При этом затраты энергии на привод холодильной установки 6 компенсируются увеличением коэффициента полезного действия теплосиловой установки теплоэлектроцентрали в связи со снижением температуры воды на входе в конденсатор 1.

Кроме того, при использовании второго варианта отпадает необходимость прокладки в тепловой сети паропровода от теплосиловой установки. В таблицах 1 и 2 представлены результаты расчетов показателей холодильной установки при приведенных в описании чертежей значениях температур воды.

Расчетные показатели холодильной установки системы теплоснабжения первого варианта.

Таблица 1
ПоказателиКоличество холодильных машин в установке, n
12345
Отопительный коэффициент холодильной машины, μi12,303,193,854,344,73
2-3,023,604,064,43
3--3,413,864,18
4---3,663,99
5----3,83
Отопительный коэффициент установки, μуп2,303,113,623,974,23
Коэффициент энергетической эффективности установки, ηуп1,001,351,571,731,84

Расчетные показатели холодильной установки системы теплоснабжения второго варианта.

Таблица 2
ПоказателиКоличество холодильных машин в установке, n
12345
Отопительный коэффициент холодильной машины, μi11,942,883,183,603,95
2-2,322,753,113,42
3--2,492,803,08
4---2,592,84
5----2,66
Отопительный коэффициент установки, μуп1,942,602,813,033,19
Коэффициент энергетической эффективности установки, ηуп1,001,341,451,561,64

Значения μi определялись по формуле

где kн=0,465±0,02 - коэффициент необратимости выпускаемых промышленностью парокомпрессионных холодильных установок холодильной мощностью до 1000 кВт с винтовым компрессором;

- холодильный коэффициент i-й холодильной машины;

- температура кипения хладагента в испарителе i-й холодильной машины, К;

- температура конденсации хладагента в конденсаторе i-й холодильной машины, К;

- температура кипения хладагента в испарителе первой от конденсатора 1 холодильной машины, К;

- температура конденсации хладагента в конденсаторе последней от конденсатора 1 холодильной машины, К.

где - отношение отопительного коэффициента холодильной установки с n холодильными машинами к отопительному коэффициенту холодильной установки с одной холодильной машиной.

Согласно приведенным в таблицах 1 и 2 значениям отопительного коэффициента установки μуn возрастает с увеличением количества холодильных машин. В связи с этим потребляемая холодильной установкой мощность уменьшается в зависимости от количества холодильных машин в установке до ηуn=1,84 раза при использовании первого и до 1,64 раза - второго варианта системы теплоснабжения.

Промышленная применимость

Использование изобретения не требует разработки принципиально новой аппаратуры и агрегатов. Для этого могут быть применены выпускаемые промышленностью приведенные на фиг.1 и 2 элементы схемы системы теплоснабжения.

Список использованной литературы

1. Грингауз Ф.И. Санитарно-технические работы. Издание восьмое. М., Высшая школа, 1979 г.

2. Беляев Ю.П. Проблемы долгосрочного развития энергетики. "Промышленная энергетика", №4, 2003 г.

3. Кириллин В.А., Сычев А.Е., Шейндлин А.Е. Техническая термодинамика. Издание четвертое. Энергоатомиздат. М., 1983 г.

4. Дроздов В.Ф. Санитарно-технические устройства зданий. М., Стройиздат, 1980 г.

1. Система теплоснабжения, содержащая подающую потребителю тепла и обратную магистрали теплоносителя и размещенную перед потребителем тепла холодильную установку, конденсатор которой включен гидравлически в подающую, а испаритель - в обратную магистраль, отличающаяся тем, что холодильная установка выполнена с несколькими, имеющими разный уровень температуры конденсации хладагента и соединенными последовательно по ходу теплоносителя, конденсаторами и с несколькими, имеющими разный уровень температуры кипения хладагента и соединенными последовательно по ходу теплоносителя, испарителями.

2. Система теплоснабжения, содержащая подающую к потребителю тепла обратную и подпиточную магистрали и размещенную перед потребителем тепла холодильную установку, конденсатор которой включен гидравлически в подающую, а испаритель - в обратную магистраль, включенный гидравлически в подающую магистраль на участке между конденсатором и потребителем тепла теплообменник и ответвление подающей магистрали, связанное гидравлически с теплообменником через редукционное устройство, отличающаяся тем, что холодильная установка выполнена с несколькими, имеющими разный уровень температуры конденсации хладагента и соединенными последовательно по ходу теплоносителя, конденсаторами и с несколькими, имеющими разный уровень температуры кипения хладагента и соединенными последовательно по ходу теплоносителя, испарителями.



 

Похожие патенты:

Изобретение относится к теплоэнергетике, в частности к системам централизованного теплоснабжения. .

Изобретение относится к теплоэнергетике, в частности, к системам централизованного отопления. .

Изобретение относится к теплоэнергетике, в частности к установкам отопления, горячего водоснабжения индивидуальных жилых домов, отдельных сооружений при использовании низкопотенциальных источников тепла, хозбытовых стоков и других тепловых отходов.

Изобретение относится к теплоэнергетике, в частности к установкам отопления, горячего водоснабжения индивидуальных жилых домов, отдельных сооружений при использовании низкопотенциальных источников тепла, хозбытовых стоков и других тепловых отходов.

Изобретение относится к теплообменнику

Изобретение относится к нагревательной установке, способу нагревания и использованию нагревательной установки для снабжения водопроводной горячей водой

Изобретение относится к области энергетики и предназначено для автономного теплоснабжения и холодоснабжения объектов индивидуального жилья

Изобретение относится к теплоэнергетике и может быть использовано в системах теплоснабжения жилых, общественных и производственных зданий и промышленного технологического оборудования

Изобретение относится к области теплоэнергетики и может применяться как для отопления, так и холодоснабжения, в частности для обеспечения как теплом, так и холодом, в бытовых и промышленных целях при соответствующей доработке существующих систем теплоснабжения

Изобретение относится к области теплоэнергетики и может применяться как для отопления, так и холодоснабжения, в частности, для обеспечения как теплом, так и холодом, в бытовых и промышленных целях при соответствующей доработке существующих систем теплоснабжения

Изобретение относится к области энергетики и предназначено для автономного теплоснабжения и холодоснабжения объектов индивидуального жилья

Изобретение относится к устройству для кондиционирования воздуха помещений. Агрегат теплового насоса, содержащий корпус, модули теплового насоса с элементами Пельтье, компрессор для принудительного всасывания воздуха через первое отверстие, направляющий воздух к модулям теплового насоса, и выдувания воздуха через второе отверстие, и впускное отверстие и выпускное отверстие для подсоединения модулей теплового насоса в контур циркуляции теплопередающей текучей среды, причем модули теплового насоса путем подвода электрической энергии в режиме нагрева отбирают тепловую энергию из текучей среды и отдают протекающему воздуху, а в режиме охлаждения отбирают тепловую энергию из протекающего воздуха и отдают текучей среде, при этом корпус имеет фронтальную пластину, действующую как излучающая пластина, и по меньшей мере один элемент Пельтье по меньшей мере одного модуля теплового насоса так соединен с излучающей пластиной, что в режиме нагрева, по меньшей мере, часть вырабатываемого этим элементом Пельтье тепла может излучаться как тепловое излучение непосредственно в темперируемое помещение. Это позволяет, при сравнительно низких температурах начального пуска центрального нагревательного прибора, добиться приятного климата помещений, не требуя для этого большой площади передачи тепла. 3 н. и 4 з.п. ф-лы, 3 ил.

Настоящее изобретение относится к системе и способу покрытия для обогрева/охлаждения помещений. Характеризуется обеспечением средств обогрева/охлаждения, содержащих элементы циркуляции воды, которые соприкасаются с внешней поверхностью наружной стены, а также тепловой насос. При этом наружная и боковая поверхности указанных элементов циркуляции покрыты с помощью изоляционных средств, изготовленных из теплоизоляционного материала. Температура доставки воды в указанном гидравлическом контуре регулируется в зависимости от температуры снаружи указанного помещения, и расход потока воды распределяется внутри частей указанного гидравлического контура в соответствии с разницей между указанной фактической температурой в указанном помещении и желаемой, задаваемой для данного помещения температурой. Это обеспечивает высокую степень термо- и звукоизоляции помещений, тем самым активно способствуя обогреву/охлаждению помещения и обеспечивая высокую энергоэффективность. 2 н. и 11 з.п. ф-лы, 17 ил.

Изобретение относится к системам отопления с тепловыми насосами, использующими тепло низкотемпературных источников естественного или искусственного происхождения для получения воды, пригодной для автономного отопления и горячего водоснабжения помещений предприятий сферы ЖКХ и быта, а также дач и домов частного сектора. Каскадная теплонасосная установка, содержащая установленные перед потребителем тепла два последовательно соединенных тепловых насоса, образующих ступени каскада, причем испаритель первой ступени каскада включен в циркуляционный контур низкопотенциального источника тепла, а конденсатор второй ступени каскада включен в циркуляционный контур потребителя тепла, при этом она содержит дополнительный циркуляционный контур с технологическим среднетемпературным теплоносителем, причем конденсатор первой ступени каскада и испаритель второй ступени каскада включены в указанный дополнительный циркуляционный контур, а на выходе из испарителя второй ступени каскада содержит дополнительную емкость для перегрева насыщенного пара хладагента, а на выходе из конденсатора второй ступени каскада содержит дополнительную емкость для отбора избыточной теплоты хладагента, при этом часть избыточной теплоты, полученной при охлаждении хладагента в дополнительной емкости на выходе из конденсатора второй ступени каскада, утилизируется и используется для перегрева насыщенного пара хладагента в дополнительной емкости на выходе из испарителя второй ступени каскада. Результатом является повышение надежности и эффективности работы каскадной теплонасосной установки, построенной на базе типовых элементов тепловых насосов. 10 з.п. ф-лы, 1 ил.
Наверх