Насадочная колонна

Изобретение относится к насадочным массообменным аппаратам для систем "газ-жидкость" и может найти применение в химической, нефтехимической, нефте- и газоперерабатывающей промышленности, металлургическом и коксохимическом производстве, а также в промышленной экологии при очистке дымовых газов и вентиляционных выбросов. В насадочной колонне, содержащей цилиндрический корпус и насадку в виде многорядно размещенных в нем колец, боковая поверхность колец насадки изогнута по окружности R=0,08-0,1 м. Кольца вертикально установлены со смещением в рядах выпуклой стороной к оси корпуса колонны таким образом, что верхний выступающий край каждого кольца нижнего ряда размещен внутри кольца верхнего ряда. Техническим результатом является увеличение степени очистки газов за счет интенсификации процесса массопередачи между газом и жидкостью. 2 ил.

 

Предлагаемое техническое решение относится к насадочным массообменным аппаратам для систем "газ-жидкость" и может найти применение в химической, нефтехимической, нефте- и газоперерабатывающей промышленности, металлургическом и коксохимическом производстве, а также в промышленной экологии при очистке дымовых газов и вентиляционных выбросов.

Известна конструкция насадочной колонны, состоящей из корпуса с патрубками входа и выхода газа и жидкости, опорных решеток с уложенной на них насадкой в виде колец Рашига, колец с перегородками, колец Паля, седел Берля или "Инталлокс". Для улучшения смачивания насадки в колоннах большого диаметра насадку укладывают слоями (секциями) высотой 2-3 м и под каждой секцией устанавливают перераспределители жидкости для нейтрализации пристенного эффекта, когда жидкость движется у стенок колонны, а газ - по ее центру. (Касаткин А.Г. Основные процессы и аппараты химической технологии. - М.: Химия, 1971, издание восьмое, переработанное, стр.468-472).

К причинам, препятствующим достижению заданного технического результата, относится неравномерное распределение жидкости и газа по объему колонны, а также необходимость установки перераспределителей жидкости, что приводит к увеличению размеров колонны.

Известна конструкция насадочной колонны, в которой в корпус на опорные решетки упорядоченно уложена насадка, состоящая из перфорированного кольца, снабженного внешними кольцевыми элементами с продольными вырезами, присоединенными с помощью ребер к перфорированному кольцу (Авт. св. СССР №294399, В01D 53/18, 1979).

К причинам, препятствующим достижению заданного технического результата, относится недостаточно равномерное распределение жидкости и газа по объему колонны, когда основная часть газа движется по центру, а жидкость по периферии сечения колонны - у ее стенок, что приводит к необходимости установки перераспределителей жидкости и увеличению высоты колонны.

Наиболее близким техническим решением к заявляемому объекту и выбранному за прототип является насадочная колонна для контактных аппаратов, содержащая цилиндрический корпус и насадку в виде уложенных в нем керамических колец с катализатором, при этом кольца выполнены с отношением их длины к диаметру 1,5-2,5, а длина кольца составляет 0,4-1,0 внутреннего диаметра корпуса, а при многорядном размещении колец в корпусе кольца выполнены в виде однополостных гиперболоидов (Авт. св. СССР №1625518, B01J 19/30, 1991).

К причинам, препятствующим достижению заданного технического результата, относится неравномерное распределение жидкости и газа по сечению и высоте колонны, что уменьшает скорость массопередачи, приводит к необходимости установки перераспределителей жидкости и в конечном счете увеличивает высоту колонны.

Задачей предлагаемого технического решения является разработка конструкции насадочной колонны и насадки и ее размещения в колонне, позволяющей равномерно распределять жидкость и газ по высоте колонны, что увеличивает эффективность процесса массопереноса.

Техническим результатом является увеличение степени очистки газа за счет интенсификации процесса массопередачи между газом и жидкостью.

Поставленный технический результат достигается тем, что в насадочной колонне, содержащей цилиндрический корпус и насадку в виде многорядно размещенных в нем колец, боковая поверхность колец насадки изогнута по окружности с радиусом R=0,08-0,1 м, при этом кольца вертикально установлены со смещением в рядах выпуклой стороной к оси корпуса колонны таким образом, что верхний выступающий край каждого кольца нижнего ряда размещен внутри кольца верхнего ряда.

Выполнение боковой поверхности колец насадки изогнутыми по окружности радиуса R позволяет при стекании по ним сверху вниз пленки жидкости и обтекании этой пленки жидкости потоком газа, движущимся снизу вверх, создавать центробежную силу, заставляющую жидкость, имеющую большую плотность, двигаться от центра кривизны радиуса R, а газ, имеющий меньшую плотность, к центру кривизны.

Вертикальная установка в рядах колец насадки выпуклой стороной к оси корпуса колонны позволяет создать в жидкости помимо осевой компоненты скорости, направленной сверху вниз, центробежную радиальную компоненту скорости от периферии к центру колонны, а в газе, помимо осевой компоненты скорости, направленной снизу вверх, центробежную радиальную компоненту скорости от центра к периферии.

Изгиб боковой поверхности колец насадки по окружности с радиусом R=0,08-0,1 м позволяет создавать центробежную силу одного порядка с силой тяжести, то есть центробежное ускорение, равное или несколько большее ускорения свободного падения

V2/R≥g,

где V - скорость жидкости или газа, м/с; R - радиус боковой поверхности колец насадки, м; g=9,81 - ускорение свободного падения, м/с2. Так как рабочие скорости газа и жидкости в насадочных колоннах порядка 1 м/с, то

R≤V2/g≈0,1

Увеличение радиуса R больше верхнего предела, равного 0,1 м, приводит к уменьшению центробежной силы и снижению эффекта выравнивания потоков жидкости и газа по сечению и высоте колонны, что не позволяет интенсивно перемешивать потоки жидкости и газа.

Уменьшение радиуса R ниже 0,08 м приводит к чрезмерному увеличению центробежной силы, что также не позволяет равномерно распределять потоки жидкости и газа по сечению и высоте колонны, что снижает эффективность массопереноса и скорость массопередачи.

Кроме того, вертикальная установка колец со смещением в рядах так, что выступающий край каждого кольца нижнего ряда размещен внутри кольца верхнего ряда, позволяет уменьшить гидравлическое сопротивление, увеличить устойчивость колец в рядах и облегчить их установку при монтаже.

На фиг.1 представлен вертикальный разрез фрагмента насадочной колонны; на фиг.2 - общий вид кольца насадки в разрезе.

Насадочная колонна состоит из корпуса 1, в котором размещены кольца 2 насадки на опорной решетке 3; боковая поверхность 4 колец 2 насадки изогнута по окружности с радиусом R=0,08-0,1 м, при этом кольца 2 вертикально установлены со смещением в рядах выпуклой стороной к оси корпуса колонны таким образом, что выступающий край 5 каждого кольца нижнего ряда размещены внутри кольца верхнего ряда.

Насадочная колонна работает следующим образом.

В корпус 1 колонны сверху подается жидкость, которой сначала заполняется весь объем корпуса 1 для полного смачивания всей поверхности колец 2 насадки. Затем снизу в колонну 1 подается газ.

Поток газа обтекает пленку жидкости, стекающей по поверхности колец 2 насадки и, проходя через все ряды многорядно вертикально со смещением установленных колец, выходит вверх из корпуса 1.

Так как боковая поверхность 4 каждого кольца 2 насадки изогнута по окружности радиуса R=0,08-0,1 м и каждое кольцо в ряду вертикально установлено со смещением выпуклой стороной боковой поверхности 4 к оси корпуса 1 колонны, то при течении пленки жидкости по выпуклой боковой поверхности 4 сверху вниз в ней под действием центробежной силы возникает компонента скорости, направленная вдоль радиуса R к центру колонны. В потоке газа, обтекающем пленку жидкости снизу вверх под действием центробежной силы, возникает компонента скорости, направленная вдоль радиуса R, но от оси колонны к стенке корпуса 1, так как плотность газа много меньше плотности жидкости.

При средних осевых скоростях жидкости и газа порядка 1 м/с при радиусе боковой поверхности 4 колец 2 R=0,08-0,1 м центробежная сила, возвращающая пленку жидкости к оси корпуса колонны, а поток газа, обтекающий эту пленку, отбрасывающая от оси колонны к корпусу 1, становится одного порядка с силой тяжести, что позволяет интенсивно перемешивать потоки жидкости и газа равномерно во всем объеме колонны как по высоте, так и по радиусу.

Меньшее значение радиуса R=0,08 м предпочтительно для колец насадки малого размера, чтобы на небольшой длине боковой поверхности 4 колец 2 большая центробежная сила успела создать радиальные компоненты скорости жидкости к центру колонны, а скорости газа к корпусу 1.

Большее значение радиуса R=0,1 м предпочтительно для колец насадки большего размера, так как в этом случае даже меньшая центробежная сила успевает создать на большой длине боковой поверхности 4 колец 2 искомые радиальные компоненты скорости для жидкости и газа.

Таким образом, предлагаемая конструкция насадочной колонны позволяет за счет создания центробежной силы двигаться жидкости не только сверху вниз, но и в радиальном направлении от стенки к оси колонны, а газ под действием этой силы движется не только снизу вверх, но и в радиальном направлении от оси колонны к ее стенке. Это увеличивает скорость массопередачи за счет интенсивного перемешивания газа и жидкости, равномерного заполнения ими всего объема колонны по высоте и радиусу, увеличивает поверхность раздела фаз за счет дробления капель и пузырьков газа, предотвращает перемещение жидкости к стенке колонны, а газа к ее оси, уменьшает размеры колонны и в конечном счете увеличивает эффективность процесса массопереноса.

Предлагаемые кольца насадки несложно установить в действующих насадочных колоннах, заменив в них обычную насадку типа колец Рашига и других, или чередовать обычную насадку, уложенную в навал, с рядами предлагаемых колец насадки с боковой поверхностью, изогнутой по окружности, и установленных согласно формуле изобретения.

Насадочная колонна, содержащая цилиндрический корпус и насадку в виде многорядно размещенных в нем колец, отличающаяся тем, что боковая поверхность колец насадки изогнута по окружности с радиусом R=0,08-0,1 м, при этом кольца вертикально установлены со смещением в рядах выпуклой стороной к оси корпуса колонны таким образом, что верхний выступающий край каждого кольца нижнего ряда размещен внутри кольца верхнего ряда.



 

Похожие патенты:

Изобретение относится к конструкциям регулярных насадок, предназначенных для проведения тепломассообменных и сепарационных процессов в системе газ (пар) - жидкость.

Изобретение относится к конструкциям регулярных насадок, которые применяются в процессах ректификации, абсорбции, очистки и осушки природного газа, а также в качестве смесителей жидких и газовых потоков, в качестве разделителей фаз в сепарационных устройствах, в качестве контактных элементов в конденсаторах смешения, в качестве оросителей градирен и может найти применение практически во всех технологических процессах нефтяной, газовой, химической и других смежных отраслях промышленности.

Изобретение относится к аппаратам для проведения массообменных процессов в системах газ (пар) - жидкость, в частности к абсорбционным и ректификационным колоннам, и может быть использовано в газовой, химической и нефтеперерабатывающей промышленности.

Изобретение относится к конструкциям регулярных насадок, предназначенных для проведения тепломассообменных и сепарационных процессов в системе газ(пар) - жидкость, например многокомпонентная или несмешивающиеся жидкости.

Изобретение относится к конструкциям регулярных насадок, которые применяются в процессах ректификации, абсорбции, очистки и осушки природного или нефтяного газа, а также в качестве смесителей жидких, газовых или газожидкостных потоков, в качестве сепарационных устройств, контактных элементов, и может найти применение в технологических процессах нефтяной и газовой промышленности.

Изобретение относится к сепарационной технике и может быть использовано на предприятиях газовой, нефтяной и нефтехимической промышленности. .

Изобретение относится к устройствам для проведения массообменных процессов в колонных аппаратах, работающих как на системах жидкость-жидкость, так и на системах пар-жидкость, и может быть использовано в нефтехимической, нефтеперерабатывающей, химической и других отраслях промышленности.

Изобретение относится к распределительно-контактным устройствам для массообменных аппаратов и может быть использовано в химической технологии, нефтехимии, теплоэнергетике и других отраслях промышленности.

Изобретение относится к области химической промышленности и предназначено для обеспечения тонкой очистки газа от жидкости при реконструкции сепараторов и фильтр-сепараторов абсорбционных и ректификационных колонн.

Изобретение относится к массообменным способам извлечения жидкостью компонентов газовой смеси и может быть использовано в массообменном оборудовании химической промышленности.

Изобретение относится к конструкции насыпных насадок для массообменных аппаратов и может быть использовано при осуществлении тепломассообменных процессов в системах жидкость-пар(газ), например, в ректификации, абсорбции, десорбции, дистилляции и других процессах.

Изобретение относится к устройствам тепломассообменных аппаратов с псевдоожиженным трехфазным слоем и может быть использовано в химической и других отраслях промышленности при очистке газовых выбросов от вредных газообразных компонентов.

Изобретение относится к созданию элементов насыпной насадки, которую используют для заполнения колонн, в которых протекают процессы массо- или теплообмена. .

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к устройствам для проведения массообменных, биореакционных и хемореакционных процессов и может быть использовано для очистки газов, природных и сточных вод, а также получения биосинтетических продуктов в медицинской, микробиологической, и других отраслях промышленности, коммунальном хозяйстве.

Изобретение относится к контактным устройствам для проведения массообменных процессов между двумя фазами и может найти применение в нефтеперерабатывающей, химической, газовой и др.

Изобретение относится к конструкционному оформлению абсорбционных башен, применяемых в производстве серной кислоты на стадиях осушки воздуха или газа от влаги и абсорбции триоксида серы из газовой смеси.

Изобретение относится к насадочным тепломассообменным аппаратам и может быть использовано в химической, нефтехимической и других отраслях промышленности для проведения процессов ректификации, абсорбции и др.
Изобретение относится к новым катализаторным засыпкам, содержащим физическую смесь каталитически активных и каталитически неактивных формованных изделий, причем каталитически неактивные формованные изделия имеют на внешней поверхности трения закругленные кромки
Наверх