Трубчатый элемент (его варианты), батарея трубчатых элементов с токопроходом по образующей и способ его изготовления

Изобретение относится к трубчатым высокотемпературным электрохимическим устройствам. Техническим результатом изобретения является повышение эффективности. Согласно изобретению трубчатые элементы с рифленой поверхностью твердого электролита в форме «волны», в форме «трапеции» или в форме «треугольника» имеют на одном из «гофров» по образующей трубки (цилиндра) выход внутреннего электрода, выполненный из материала токопрохода, например хромита лантана стронция. При этом токопроход соединен с твердым электролитом через электроизоляционный слой, например алюмомагнезиальную шпинель или стеклогерметик. Аналогичную конструкцию имеют элементы с твердым электролитом, выполненным с рифленой поверхностью со сферическими, пирамидальными выпуклостями, расположенными по образующей трубки или со сдвигом каждого ряда выпуклостей относительно соседних рядов «в шахматном порядке». Только в этом случае токопроход становится не в виде единичного, сплошного «гофра», расположенного вдоль всего элемента, линейно по образующей, а в виде прерывистых выпуклостей, расположенных в один ряд также по образующей линейно, или вдоль ломаной линии в случае «шахматного порядка» расположения выпуклостей. 8 н.п. ф-лы, 2 ил.

 

Группа настоящих изобретений относится к высокотемпературным электрохимическим устройствам (ЭХУ) с твердым электролитом, таким как топливные элементы, электролизеры, конвертеры, насосы и т.п. устройства.

Известные устройства содержат высокотемпературные элементы (например, топливные элементы) с твердым оксидным электролитом на основе диоксида циркония, имеющие планарную, трубчатую или блочную конструкции твердого электролита с нанесенными газодиффузионными анодом и катодом («Высокотемпературный электролиз газов» М.В.Перфильев, А.К.Демин, Б.Л.Кузин, А.С.Липилин, ISBN 5-02-001399-4., М.: Наука, 1988, 232 с.). Одним из аналогов элемента с несущим электролитом можно считать элемент по патенту РФ №2027258, Н01М 8/12, «ВЫСОКОТЕМПЕРАТУРНЫЙ ЭЛЕКТРОХИМИЧЕСКИЙ ГЕНЕРАТОР» Сомов С.И., Демин А.К., Липилин А.С., Кузин Б.Л., Перфильев М.В., Дата подачи заявки: 03.07.1990, Дата публ. формулы: 20.01.1995, в котором был использован трубчатый элемент с несущим твердым электролитом, газодиффузионными электродами и токопроходом по образующей.

Наиболее близким аналогом, прототипом авторы считают элементы с тонкослойным твердым оксидным электролитом на основе диоксида циркония трубчатой конструкции с несущим катодом, с нанесенным газодиффузионным анодом, организованными анодной и катодной камерами для подачи реагентов топлива и окислителя и токопроходом по образующей (А.О.Isenberg, in 1982 National Fuel Cell Seminar Abstracts, November 14-18, 1982, Newport Beach, CA, Courtesy Associates, Washington, DC, 1982, p.154).

Конструкция элемента прототипа предполагает трубчатую конструкцию элемента с несущим катодом и твердым электролитом (в виде ровной пробирки) с отбором тока от внутреннего электрода токопроходом по образующей пробирки, выходящим на внешнюю поверхность элемента. При этом электрическое соединение элементов в батарею производят в рабочей зоне. Электролит элемента прототипа имеет недостаточно развитую рабочую поверхность. Это можно рассматривать как недостаток конструкции прототипа, ухудшающий удельные характеристики элемента и батареи. Другим недостатком можно считать недостаточную механическую прочность элемента.

Технической задачей предлагаемых изобретений являются элементы, лишенные этих недостатков прототипа. Увеличение рабочей поверхности и механической прочности достигается формированием электролита в виде пробирки с рифлеными (гофрированными) стенками. Токопроход (электрический вывод внутреннего электрода) предлагается делать в рабочей зоне элемента, используя для этого один из гофров, выполненный из материала токопрохода по образующей. Это позволяет при увеличении длины элемента (с увеличенной рабочей площадью) сохранить (оставить постоянной) электрическую эффективность элемента, что также в конечном счете улучшает удельные характеристики элемента и батареи.

Решение технической задачи в заявляемых изобретениях достигается тем, что трубчатые элементы с рифленой поверхностью твердого электролита в форме «волны», в форме «трапеции» или в форме «треугольника» имеют на одном из «гофров» по образующей трубки (цилиндра) выход внутреннего электрода, выполненный из материала токопрохода, например хромита лантана стронция. При этом токопроход соединен с твердым электролитом через электроизоляционный слой, например алюмомагнезиальную шпинель или стеклогерметик. Аналогичную конструкцию имеют элементы с твердым электролитом, выполненным с рифленой поверхностью со сферическими, пирамидальными выпуклостями, расположенными по образующей трубки или со сдвигом каждого ряда выпуклостей относительно соседних рядов «в шахматном порядке». Только в этом случае токопроход становится не в виде единичного, сплошного «гофра», расположенного вдоль всего элемента, линейно по образующей, а в виде прерывистых выпуклостей, расположенных в один ряд также по образующей линейно или вдоль ломаной линии в случае «шахматного порядка» расположения выпуклостей. Аналогично выполнены конструкции элементов с несущим внутренним электродом, с несущим внешним электродом и с несущими обоими электродами. Отличаются они только толщиной твердого электролита. Для несущего электролита его толщина составляет 100-200 мкм, а для несущих электродов 10-50 мкм. При этом следует отметить, что в случае несущих обоих электродов улучшается токораспределение (улучшаются электрические удельные характеристики), упрощается (удешевляется) оснастка для прессования, конструкция становится механически более уравновешенной, значит, повышается долгосрочная прочность, термостойкость, увеличивается срок службы. Стоит сразу указать, что кроме заявляемого способа другими известными способами формирования тонкопленочного твердого электролита нельзя получить конструкций элементов с двумя несущими электродами. Способ изготовления трубчатого элемента достаточно прост. Он состоит из следующих операций: сматывание в рулон в необходимой последовательности и необходимом количестве слоев, предварительно изготовленных, тонких пленок внутреннего электрода, интерфейсного слоя, твердого электролита, интерфейсного слоя и внешнего электрода. В место формирования одного гофра для одних конструкций, одного или двух рядов выпоклостей для других конструкций закладывают пленку из материала токопрохода, соединенную с пленкой электроизоляционного материала. Затем производят формование, например, магнитоимпульсным прессованием и спекание. Затем, например, методом шлифования вскрывают «гофр» или выпуклости, для выхода на поверхность материала токопрохода. Изготовленные таким способом элементы с рифленым твердым электролитом готовы для сборки в батареи. Электрическое соединение элементов осуществляют через электронпроводящий войлок, закладывая его в углубление между «гофрами» одного элемента. При этом соединяемый элемент своим «гофром» входит в углубление между «гофрами» с войлоком первого элемента. В последовательном соединении элементов «гофр» с материалом токопрохода (выходом внутреннего электрода) одного элемента вставляется в противоположное токопроходу углубление между «гофрами» с внешним электродом другого элемента. Предлагаемая конструкция батареи делает более надежным электрическое соединение элементов между собой, конструктивно предотвращая выпадание и замыкание войлоком противоположных электродов элемента, что случается в известных конструкциях.

На фигуре 1 представлен топливный элемент трубчатой конструкции с волнообразным рифлением и токопроходом по образующей. Элемент имеет электроды 1, твердый тонкослойный электролит 2, керамический токопроход 3 и электроизоляционный слой 4. На фигуре 2 демонстрируется сборка батареи из четырех топливных элементов 1, пространственно размещенных между анодным и катодным токовыми коллекторами 2. Элементы по току соединены между собой параллельно и последовательно и соединены с токовыми коллекторами 2.

Пример исполнения. Методом литья на лавсановую подложку (пленку) шликеров на основе поливинилбутираля (10-14 вес %) были отлиты пленки из слабоагломерированных нанопорошков (S=60-14 м2/г) твердых электролитов на основе диоксида циркония и церия толщиной 10-20 мкм. Из агломерированных микропорошков (S=12-14 м2/г) этих же материалов были отлиты пленки толщиной около 5-10 мкм. Из микропорошка электродного материала манганита лантана стронция была отлита пленка толщиной 20-30 мкм. После наматывания 3-4 слоев пленки из электродного материала была вложена полоска из хромита лантана стронция и пленка из алюмомагнезиальной шпинели. Затем один слой из микропорошка YSZ, на который намотаны в 6 слоев нанопорошковые пленки YSZ, отделенные от лавсановой ленты, один слой микропорошковой пленки и снова 3-4 слоя пленки из электродного материала. Затем после вакуумирования и разогрева до 125°С было произведено магнитно-импульсное прессование (омоноличивание термопластичных слоев) при давлении около 0,3 ГПа и спекание в атмосфере воздуха при температуре 1150°С в течение одного часа. Элементы имели диаметр около 10 мм с толщиной электролита около 60 мкм, с размером зерна около 100 нм. Шлифованием на алмазном диске убирают слой внешнего электрода, интерфейсного слоя, электролита, второго интерфейсного слоя и слоя электроизоляционной керамики, обнажив тем самым токопроход от внутреннего электрода. Изготовленные по этой технологии элементы такой конструкции могут быть собраны в батарею с последовательно параллельным по току соединением элементов с токопроходом по образующей через электропроводящую вату. Такие элементы и батареи могут работать в режиме кислородного насоса.

1. Трубчатый элемент для батарей электрохимических устройств с тонкослойным твердым электролитом, газодиффузионными электродами и интерфейсными слоями, рифленой поверхностью твердого электролита в форме «волны», в форме «трапеции», или в форме «треугольника», отличающийся тем, что один из «гофров» по образующей трубки (цилиндра) выполнен из материала токопрохода, например, хромита лантана стронция, электрически соединенный с внутренним электродом, например, из манганита лантана стронция (LSM) или Ni кермета, и твердым электролитом, например, на основе диоксида циркония стабилизированного иттрием (YSZ), причем с последним через электроизоляционный слой, например, алюмомагнезиальную шпинель или стеклогерметик.

2. Трубчатый элемент для батарей электрохимических устройств с тонкослойным твердым электролитом, газодиффузионными электродами и интерфейсными слоями, с макрорельефной поверхностью твердого электролита со сферическими или пирамидальными выпуклостями, расположенными по образующей трубки или со сдвигом каждого ряда относительно соседних в «шахматном порядке», отличающийся тем, что один или два ряда выпоклостей по образующей трубки (цилиндра) выполнен(ы) из материала токопрохода, например, хромита лантана стронция, электрически соединенного с внутренним электродом, например, из манганита лантана стронция (LSM) или Ni кермета, и твердым электролитом, например, на основе диоксида циркония, стабилизированного иттрием (YSZ), причем с последним через электроизоляционный слой, например, алюмомагнезиальную шпинель или стеклогерметик.

3. Трубчатый элемент для батарей электрохимических устройств с тонкослойным твердым электролитом, газодиффузионными электродами и интерфейсными слоями, с несущим внутренним электродом, например, из LSM или Ni кермета, трубчатой конструкции имеющим внутреннюю, гладкую цилиндрическую поверхность и внешнюю макрорельефную поверхность в виде гофр по образующей в форме «волны», «трапеции», «треугольника» или сферических, пирамидальных выпуклостей, расположенных по образующей или со сдвигом каждого ряда относительно соседних в «шахматном порядке», отличающийся тем, что один гофр для одних конструкций, один или два ряда выпоклостей для других конструкций, расположенные по образующей элемента выполнены из материала токопрохода, например, хромита лантана стронция, электрически соединенного с внутренним электродом, например, из манганита лантана стронция (LSM) или Ni кермета, и твердым электролитом, например, на основе диоксида циркония, стабилизированного иттрием (YSZ), причем с последним через электроизоляционный слой, например, алюмомагнезиальную шпинель или стеклогерметик.

4. Трубчатый элемент для батарей электрохимических устройств с тонкослойным твердым электролитом, газодиффузионными электродами и интерфейсными слоями, с несущим внешним электродом, например, из манганита лантана стронция (LSM) или Ni кермета, трубчатой конструкции имеющим наружную цилиндрическую поверхность и внутреннюю «макрорельефную» поверхность в виде гофр по образующей в форме «волны», «трапеции», «треугольника» или сферических, пирамидальных выпуклостей, расположенных по образующей или со сдвигом каждого ряда относительно соседних в «шахматном порядке», отличающийся тем, что один гофр для одних конструкций, один или два ряда выпуклостей для других конструкций, расположенные по образующей элемента выполнены из материала токопрохода, например, хромита лантана стронция, электрически соединенного с внутренним электродом, например, из манганита лантана стронция (LSM) или Ni кермета, и твердым электролитом, например, на основе диоксида циркония, стабилизированного иттрием (YSZ), причем с последним через электроизоляционный слой, например, алюмомагнезиальную шпинель или стеклогерметик.

5. Трубчатый элемент для батарей электрохимических устройств с тонкослойным твердым электролитом, газодиффузионными электродами и интерфейсными слоями, с несущими внешним и внутренним электродами, например, из манганита лантана стронция (LSM) или Ni кермета, имеющими соответственно внешнюю и внутреннюю гладкие цилиндрические поверхности и расположенный между ними и соединенный с ними через интерфейсные слои тонкий твердый электролит, например, YSZ толщиной 2-50 мкм, выполненный в виде гофр по образующей в форме «волны», «трапеции», «треугольника» или сферических, пирамидальных выпуклостей, расположенных по образующей или со сдвигом каждого ряда относительно соседних в «шахматном порядке», отличающийся тем, что один гофр для одних конструкций, один или два ряда выпуклостей для других конструкций, расположенные по образующей элемента выполнены из материала токопрохода, например, хромита лантана стронция, электрически соединенного с внутренним электродом, например, из манганита лантана стронция (LSM) или Ni кермета, и твердым электролитом, например, на основе диоксида циркония, стабилизированного иттрием (YSZ), причем с последним через электроизоляционный слой, например, алюмомагнезиальную шпинель или стеклогерметик.

6. Способ изготовления трубчатого элемента для батарей электрохимических устройств с тонкослойным твердым электролитом, газодиффузионными электродами и интерфейсными слоями по п.1 или 2, включающий сматывание в рулон в необходимой последовательности и необходимом количестве слоев тонких пленок внутреннего электрода, интерфейсного слоя, твердого электролита, интерфейсного слоя и внешнего электрода, формование изделия с последующим спеканием, отличающийся тем, что в процессе сматывания после пленки внутреннего электрода в место расположения одного гофра для одних конструкций, одного или двух рядов выпуклостей для других конструкций, расположенных по образующей элемента закладывают пленку из материала токопрохода, например, хромита лантана стронция, и пленку из электроизоляционного материала, например, алюмомагнезиальной шпинели или стеклогерметика, затем наматывают другие функциональные слои, формуют, спекают и вскрывают, например методом шлифования, обнажают токопроход.

7. Способ изготовления трубчатого элемента для батарей электрохимических устройств с тонкослойным твердым электролитом, несущим или несущими газодиффузионными электродами и интерфейсными слоями по пп.3, или 4, или 5, включающим сматывание в рулон в необходимой последовательности и необходимом количестве слоев тонких пленок внутреннего электрода, интерфейсного слоя, твердого электролита, интерфейсного слоя и внешнего электрода, формование изделия с последующим спеканием, отличающийся тем, что в процессе сматывания после пленки внутреннего электрода в место расположения одного гофра для одних конструкций, одного или двух рядов выпуклостей для других конструкций, расположенных по образующей элемента, закладывают пленку из материала токопрохода, например, хромита лантана стронция, и пленку из электроизоляционного материала, например, алюмомагнезиальной шпинели или стеклогерметика, затем наматывают другие функциональные слои, а после предварительного формования, рифления пленок изделие закладывают в простую цилиндрическую форму с ровными поверхностями, заполняют один или два промежутка между заготовкой элемента и формой более крупным микропорошком, производят, например, магнитно-импульсное прессование, производят спекание, а затем вскрывают, например, методом шлифования, обнажают токопроход.

8. Батарея трубчатых элементов электрохимических устройств с несущим тонкослойным твердым электролитом или несущим, несущими газодиффузионными электродами и интерфейсными слоями по любому из пп.1-5, соединенные по току последовательно-параллельно через электронпроводящий войлок, например никелевую вату при несущем катоде, отличающаяся тем, что для последовательного соединения элементов по току войлок заложен в углубление между «гофрами» или поверхностью внешнего электрода, расположенными напротив токопрохода первого элемента, выводящего внутренний электрод и токопроходом второго элемента, вставляемым в углубление между «гофрами» и соединенным электрически с первым, при этом параллельное соединение групп последовавтельно соединенных элементов в батарею осуществлено так же войлоком, помещенным его между «гофрами» или поверхностями внешних электродов соседних элементов групп, начиная от общего коллектора тока: первый с первыми, второй со вторыми и т.д.



 

Похожие патенты:

Изобретение относится к области электротехники, к изготовлению трубчатых элементов для батарей высокотемпературных электрохимических устройств. .

Изобретение относится к электротехнической промышленности, в частности к модулям твердых окисных топливных элементов. .

Изобретение относится к твердооксидным топливным элементам. .

Изобретение относится к электрохимическим устройствам, а более конкретно к источникам электрической энергии, выполненным на основе высокотемпературных твердооксидных топливных элементов в форме вытянутой пробирки.

Изобретение относится к области электротехники, в частности к изготовлению топливных элементов, в которых требуется регулирование уровня гидротации мембраны из полимерного электролита во время работы.

Изобретение относится к области электротехники, к созданию батареи топливных элементов, системы топливных элементов, содержащих батарею топливных элементов, и к способу изготовления батареи топливных элементов.

Изобретение относится к размещению плоских твердотельных оксидных топливных элементов в пакете с улучшенной системой каналов. .

Изобретение относится к области электротехники, в частности к высокотемпературным топливным элементам с твердым электролитом. .

Изобретение относится к твердооксидному топливному элементу (ТЭ). .

Изобретение относится к области электротехники, в частности к соединению, имеющему высокую электронную проводимость и характеризующемуся тем, что оно относится к типу АВСО(х- )Hal(у- ) со структурой калиевоникелевого флюорита, причем х+у=4, и лежат в интервале между -0,7 и +0,7.

Изобретение относится к высокотемпературным топливным элементам

Изобретение относится к твердооксидному топливному элементу, к металлокерамическому материалу (кермету), к способу получения упомянутого кермета и к способу выработки энергии с использованием такого топливного элемента

Изобретение относится к области высокотемпературных топливных элементов (ВТТЭ), а именно трубчатых твердооксидных топливных элементов с металлической опорой

Изобретение относится к области электрохимической энергетики, а именно к твердооксидным топливным элементам (ТОТЭ) с рабочими температурами 500-750°С

Изобретение относится к области электротехники, в частности к батареи твердооксидных топливных элементов

Изобретение относится к твердооксидным топливным элементам (ТОТЭ)
Изобретение относится к твердооксидным топливным элементам (ТОТЭ)
Изобретение относится к области электрохимической энергетики, а именно к твердооксидным топливным элементам (ТОТЭ) с рабочими температурами 500-750°С

Изобретение относится к электрохимическим элементам

Изобретение относится к области топливных элементов и может быть использовано для создания источников тока в различных отраслях промышленности
Наверх