Способ производства холоднокатаной стали для холодной штамповки

Изобретение относится к области металлургии и может быть использовано при изготовлении сталей, применяемых в автомобилестроении. Технический результат изобретения - повышение склонности к ВН-эффекту, в том числе при термической обработке в колпаковых печах при сохранении высокой штампуемости. Выплавляют сталь при следующем соотношении компонентов, мас.%: углерод 0,002-0,015, кремний 0,005-0,050, марганец 0,05-1,0, фосфор 0,005-0,09, сера 0,003-0,020, алюминий 0,02-0,07, азот 0,002-0,007, титан 0,0005-0,040, ниобий не более 0,060, железо и неизбежные примеси - остальное, при выполнении следующих условий: Сэф=[С]-СTi-CNb≥0,0006%, где Сэф - эффективное содержание углерода, не связанного титаном или ниобием; [С] - общее содержание углерода в стали; CTi - содержание углерода, связанного титаном: при отношении содержания титана [Ti] к содержанию азота [N] [Ti]/[N]<3,43 СTi=0, при [Ti]/[N]≥3,43 CTi=([Ti]-3,43N)/4 СNb - содержание углерода, связанного ниобием, CNb=Nb/7,74; Сэф+0,05[Р]≥0,003%, где [Р] - содержание фосфора в стали; ведут разливку стали, горячую прокатку, смотку полос в рулоны при температуре не более 650°С, холодную прокатку и рекристаллизационный отжиг в колпаковой печи с регламентированным нагревом: сначала до 450-500°С со скоростью не менее 50°С/час, затем до 550-600°С со скоростью не более 30°С/час, далее со скоростью не более 50°С/час до 700°С и при необходимости нанесения покрытия. 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к области металлургии, к способам производства холоднокатаной стали с высокими вытяжными свойствами для холодной штамповки, и может быть использовано при изготовлении сталей, применяемых в автомобилестроении.

В последнее время кроме требований обеспечения высокой штампуемости все больше предъявляются требования к повышенному уровню прочности, в частности, в результате упрочнения при сушке лакокрасочных покрытий на готовых деталях - ВН-эффекта (bake-hardening effect). При этом в зависимости от оборудования конкретных заводов, главным образом, от режимов термической обработки подбирается определенная система легирования стали и остальные технологические параметры производства. Так, при использовании отжига в колпаковых печах для обеспечения требуемой величины ВН-эффекта часто легируют сталь повышенным количеством фосфора, что может приводить к охрупчиванию границ зерен. Поэтому очень важно выбрать оптимальный химический состав стали и другие технологические параметры, чтобы обеспечить наиболее высокий комплекс свойств стали при ее минимальной стоимости.

Известен способ производства холоднокатаной стали для глубокой вытяжки, включающий выплавку стали, содержащей, мас.%:

углерод - 0,001÷0,006

кремний - 0,002÷0,020

марганец - 0,07÷0,30

фосфор - 0,005÷0,020

сера - 0,005÷0,010

алюминий - 0,015÷0,050

азот - 0,002÷0,006

титан - 0,02÷0,08

ниобий - 0,005÷0,060

кислород - 0,001÷0,005

железо и неизбежные примеси - остальное,

при этом суммарное содержание алюминия и титана составляет 0,07÷0,12%, отношение содержания алюминия к содержанию кислорода составляет не менее 5,0, а минимальное содержание титана рассчитывают из соотношения

(Timin)=3,43(N)+2,4(S),

разливку, горячую прокатку, смотку полос в рулоны при 710÷730°С, травление, холодную прокатку, отжиг в колпаковых печах при 700°С и дрессировку. Как вариант, после травления и холодной прокатки проводят цинкование, непрерывный отжиг при 850°С и дрессировку.

Способ направлен на повышение штампуемости стали, независимо от режима термической обработки и нанесения защитного покрытия, повышение коррозионной стойкости (Патент РФ №2233905, МПК С22С 38/14, 10.08.2004 г.).

Недостатком такого способа является отсутствие гарантированной величины ВН-эффекта, особенно после отжига в колпаковых печах, а также сравнительно высокая стоимость стали, связанная с необходимостью обеспечения сверхнизкого содержания углерода, легирования титаном и ниобием.

Известен способ производства листовой стали, включающий непрерывную разливку слябов из стали, содержащей, мас.%:

углерод - 0,002÷0,007

кремний - 0,005÷0,050

марганец - 0,08-0,16

алюминий - 0,01-0,05

титан - 0,05÷0,12

фосфор - не более 0,015

сера - не более 0,010

хром, никель, медь - не более 0,04 каждого

азот - не более 0,006

железо - остальное,

нагрев слябов до 1150÷1240°С, горячую прокатку с температурой конца прокатки не ниже 870°С, охлаждение водой до 550÷730°С, смотку в рулоны, травление, холодную прокатку с суммарным обжатием не менее 70%, отжиг в колпаковой печи при 700÷750°С в течение 11÷34 часов и дрессировку.

Способ направлен на улучшение вытяжных свойств и увеличение выхода кондиционной листовой стали (Патент РФ №2197542, МПК С21D 8/04, 27.01.2003 г.).

Недостаток способа: высокое содержание титана, низкое содержание фосфора не позволяют обеспечить упрочнение стали в результате ВН-эффекта.

Наиболее близким к заявляемому является способ производства холоднокатаных полос из сверхнизкоуглеродистой стали, включающий выплавку стали, содержащую, мас.%:

углерод - 0,006÷0,10

марганец - 0,01÷0,15

фосфор ≤0,07

азот ≤0,0025

алюминий ≤0,04

ниобий - 0,031÷0,06

сера ≤0,008

железо и неизбежные примеси - остальное,

разливку, нагрев слябов до 1150÷1200°С, горячую прокатку с температурой конца прокатки при 910÷920°С, смотку при 740÷750°С, холодную прокатку с суммарным обжатием не менее 70%, нагрев полосы со скоростью 10÷20°С/с до температуры отжига, определяемой в зависимости от отношения Nb/C по формулам:

при 3,1≤Nb/C≤4,65

Tотж=7,52·(Nb/C)2+45,55·Nb/C+791, °C,

при 4,65<Hb/С≤10

Tотж=1,75·(Nb/C)2+33,81·Nb/C+730, °С,

где Nb и С - содержание ниобия и углерода в стали, мас.%,

выдержку при температуре отжига в течение 50-60 с и охлаждение со скоростью 15÷25°С/с до 340÷360°С.

При необходимости на холоднокатаные полосы наносят покрытия.

Способ направлен на стабилизацию комплекса механических свойств при обеспечении категории весьма особо сложной вытяжки с одновременным получением упрочняющего эффекта (ВН-эффекта) не менее 40 МПа (Патент РФ №2212457, МПК С21D 8/04, 20.09.2003 г. - прототип).

Недостатком данного способа является возможность его применения только для непрерывных термических агрегатов. При термической обработке в колпаковых печах, когда температура отжига не превышает 730÷750°С, требуемая величина ВН-эффекта не обеспечивается.

Задачей данного изобретения является оптимизация химического состава и других технологических параметров производства холоднокатаной стали с обеспечением технического результата в виде повышения склонности к ВН-эффекту, в том числе при термической обработке в колпаковых печах при сохранении высокой штампуемости.

Технический результат достигается тем, что в известном способе производства холоднокатаной стали для холодной штамповки, включающем выплавку стали, содержащей углерод, марганец, фосфор, серу, алюминий, азот, ниобий, железо и неизбежные раскислители и примеси, разливку, горячую прокатку, смотку полос в рулоны, холодную прокатку и рекристаллизационный отжиг, при необходимости нанесения покрытия, согласно изобретению выплавляют сталь, дополнительно содержащую титан при следующем соотношении компонентов, мас.%:

углерод - 0,002÷0,015

кремний - 0,005÷0,050

марганец - 0,05÷1,0

фосфор - 0,005÷0,09

сера - 0,003÷0,020

алюминий - 0,02÷0,07

азот - 0,002÷0,007

титан - 0,0005÷0,040

ниобий - не более 0,060

железо и неизбежные примеси - остальное,

при выполнении следующих условий:

Сэф=[С]-CTi-CNb≥0,0006% (1),

где Сэф - эффективное содержание углерода, не связанного титаном или ниобием;

[С] - общее содержание углерода в стали;

CTi - содержание углерода, связанного титаном: при отношении содержания титана [Ti] к содержанию азота [N] [Ti]/[N]<3,43 CTi=0, при [Ti]/[N]≥3,43 CTi=([Ti]-3,43N)/4;

CNb - содержание углерода, связанного ниобием, CNb=Nb/7,74;

Сэф+0,05[Р]≥0,003% (2),

где [Р] - содержание фосфора в стали,

также тем, что смотку полосы в рулоны ведут при температуре не более 650°С, а также тем, что рекристаллизационный отжиг ведут в колпаковой печи при температуре не ниже 700°С с регламентированным нагревом: нагрев полосы до температуры 450÷500°С со скоростью не менее 50°С/час с последующим замедлением нагрева, по крайней мере до 550÷600°С со скоростью не более 30°С/час, далее со скоростью не более 50°С/час до температуры отжига.

Сущность изобретения сводится к следующему. Для обеспечения высокой штампуемости и обеспечения определенной величины ВН-эффекта необходимо содержание в феррите свободного углерода 6÷20 ppm. В случае непрерывного отжига высокие скорости охлаждения препятствуют выделению углерода в виде цементита и обеспечить требуемое содержание углерода в твердом растворе возможно путем обеспечения определенных соотношений между углеродом, титаном и ниобием (с учетом содержания азота и серы). При медленном охлаждении в процессе колпакового отжига значительная часть углерода может выделиться в виде цементита и требуемая величина ВН-эффекта не получится. Поэтому одним из способов обеспечения ВН-эффекта в случае колпакового отжига является обеспечение перед началом охлаждения более высокого содержания углерода, чем в случае непрерывного отжига, не менее 30 ppm. Другим способом обеспечения требуемой величины ВН-эффекта при достаточно низком содержании углерода в твердом растворе перед началом ускоренного охлаждения - от 6 ppm является легирование стали фосфором, который, снижая скорость диффузии углерода, способствует его сохранению в твердом растворе в количестве, достаточном для проявления ВН-эффекта. Выполнение условия (1) Сэф=[С]-CTi-CNb≥0,0006% обязательно для того, чтобы перед началом охлаждения углерод в количестве, равном Сэф, присутствовал в твердом растворе. При медленном охлаждении часть этого углерода может выделиться в виде цементита. Чтобы этого не произошло, необходимо выполнение условия (2) Сэф+0,05[Р]≥0,003%, смысл которого сводится к следующему. С увеличением содержания углерода в твердом растворе перед началом охлаждения (Сэф) снижается минимально необходимое содержание фосфора, обеспечивающее сохранение углерода в твердом растворе. При значении Сэф≥0,00275% ВН-эффект может быть получен и при минимальном содержании фосфора - 0,005%, хотя при увеличении содержания фосфора величина ВН-эффекта увеличивается. При значении Сэф<0,00275% для обеспечения ВН-эффекта легирование фосфором обязательно, тем в большей степени, чем ниже Сэф (в соответствии с уравнением (2)). CTi - содержание углерода, связанного титаном: при отношении содержания титана [Ti] к содержанию [N] [Ti]/[N]<3,43 CTi=0, так как весь титан будет израсходован на связывание азота, при [Ti]/[N]≥3,43 углерод может быть связан тем количеством титана, которое останется после связывания азота CTi=([Ti]-3,43N)/4 (на связывание азота будет израсходовано титана в количестве 3,43N).

Следует отметить, что выполнение условия (2) повысит уровень свойств и величину ВН-эффекта и при колпаковом и при непрерывном отжигах стали, в том числе с нанесением покрытия.

Ограничение нижнего предела содержания углерода связано с тем, что при дальнейшем уменьшении содержания углерода снижается склонность к ВН-эффекту. Ограничение минимального содержания азота связано с его участием в выделении нитрида алюминия при колпаковом отжиге, влияющем благоприятно на штампуемость. Нижний предел содержания фосфора, серы, кремния и марганца в стали определяется возможностями существующих на сегодняшний день сталеплавильных технологий. Дальнейшее снижение содержания этих элементов не вызывает существенного улучшения потребительских свойств, но приводит к существенному удорожанию металлопродукции.

Увеличение содержания углерода, азота, серы, кремния и марганца, а также фосфора выше верхних пределов формулы изобретения приводит к ухудшению штампуемости.

Минимальное содержание алюминия в стали определяется необходимостью достаточного раскисления стали и связывания азота в нитрид алюминия. Ограничение верхнего предела содержания алюминия связано с его отрицательным влиянием на штампуемость из-за увеличения количества нитридов алюминия и, следовательно, структурной неоднородности.

Минимальное содержание титана определяется требованием выделения некоторого количества азота в виде нитрида титана. Увеличение содержания титана и ниобия выше верхнего предела, помимо отрицательно влияния на штампуемость, снижения величины ВН-эффекта, приводит к удорожанию стали.

Ограничение температуры смотки - не более 650°С связано с необходимостью сохранения в твердом растворе после горячей прокатки азота, который в дальнейшем, при отжиге, выделяясь в виде мелкодисперсных частиц нитрида алюминия, благоприятно влияет на структуру, текстуру и штампуемость стали.

Увеличение скорости нагрева при рекристаллизационном отжиге до температуры 450÷500°С не менее 50°С/час связано с необходимостью подавить выделение частиц ALN до начала рекристаллизации, а снижение скорости нагрева в интервале температур 450÷500°С до 550÷600°С не более 30°С/час - с необходимостью обеспечить более полное выделение частиц ALN на начальных стадиях рекристаллизации. Ограничение скорости последующего нагрева не более 50°С/час, а также минимального значения температуры отжига 700°С связано с необходимостью создания условий для более полного протекания процессов собирательной рекристаллизации, что также требуется для обеспечения высокой штампуемости.

Примеры конкретного выполнения способа.

Семь плавок низкоуглеродистых сталей были выплавлены в 300-тонном конвертере ОАО «Северсталь» и разлиты на установке непрерывной разливки в слябы сечением 250×1290 мм. Горячую прокатку слябов на полосы толщиной 3,2 мм проводили на стане «2000». Температура конца прокатки составляла 850÷890°С. Полосы после душирования сматывали в рулоны при температуре 560÷700°С. После травления и холодной прокатки на полосы толщиной 0,9 мм полосы подвергали рекристаллизационному отжигу в лабораторных условиях по режиму, имитирующему отжиг в агрегате цинкования, или в самом агрегате цинкования (АГЦ) или в колпаковой печи при температуре 700÷730°С. После дрессировки со степенью обжатия 1,0% проводили комплексные механические испытания проката с определением величины ВН-эффекта.

Вариант 1 - сталь, содержащая 0,005% углерода, 0,009% кремния, 0,16% марганца, 0,045% фосфора, 0,010% серы, 0,04% алюминия, 0,004% азота, 0,015% титана, 0,019% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,005-0,00032-0,00245=0,00223%>0,0006%, то есть соответствует формуле изобретения; выражение Сэф+0,05[Р]=0,00223+0,00225=0,00448%>0,003%, то есть соответствует формуле изобретения. Отжиг проводили по режиму, соответствующему отжигу в агрегате цинкования: нагрев до температуры отжига 840°С со скоростью 5°С/с, выдержка 60 с; охлаждение до 450°С со скоростью 10°С/с, выдержка 3 с, охлаждение на воздухе (вариант соответствует п.1 формулы изобретения).

Вариант 2 - сталь, содержащая 0,006% углерода, 0,008% кремния, 0,18% марганца, 0,040% фосфора, 0,008% серы, 0,03% алюминия, 0,004% азота, 0,015% титана, 0,019% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,006-0,00032-0,00245=0,00323%>0,0006%, то есть соответствует формуле изобретения; выражение Сэф+0,05[Р]=0,00323+0,00200=0,00523%>0,003%, то есть соответствует формуле изобретения. Отжиг проводили по режиму в агрегате цинкования: по режиму, описанному в варианте 1, но с нанесением горячецинкового покрытия (вариант соответствует п.1 формулы изобретения).

Вариант 3 - сталь, содержащая 0,008% углерода, 0,010% кремния, 0,65% марганца, 0,011% фосфора, 0,012% серы, 0,04% алюминия, 0,005% азота, 0,02% титана, 0,03% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,008-0,0007-0,0039=0,0034%>0,0006%, то есть соответствует формуле изобретения; выражение Сэф+0,05[Р]=0,0034+0,00055=0,00395%>0,003% также соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 560°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 700°C со скоростью около 35°С/час (вариант полностью соответствовал п.п.1-3 формулы изобретения).

Вариант 4 - сталь, содержащая 0,004% углерода, 0,013% кремния, 0,19% марганца, 0,050% фосфора, 0,009% серы, 0,02% алюминия, 0,003% азота, 0,01% титана, 0,025% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,004-0,0032=0,0008%>0,0006%, то есть соответствует формуле изобретения выражение Сэф+0,05[Р]=0,0008+0,0025=0,0033%>0,003% также соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 600°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 700°С со скоростью около 35°С/час (вариант полностью соответствовал п.п.1-3 формулы изобретения).

Вариант 5 - сталь, содержащая 0,006% углерода, 0,011% кремния, 0,15% марганца, 0,015% фосфора, 0,006% серы, 0,04% алюминия, 0,04% ниобия, 0,002% азота, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,006-0,0052=0,0008%>0,0006%, то есть соответствует формуле изобретения (CTi=0, так как сталь не содержит титан); выражение Сэф+0,05[Р]=0,0008+0,00075=0,00155%<0,003%, то есть не соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 600°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 700°С со скоростью около 35°С/час (вариант не соответствует формуле изобретения по значению выражения (2)).

Вариант 6 - сталь, содержащая 0,006% углерода, 0,013% кремния, 0,15% марганца, 0,060% фосфора, 0,007% серы, 0,05% алюминия, 0,015% титана, 0,042% ниобия, 0,004% азота, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-CTi-CNb=0,006-0,00032-0,0054=0,00028%<0,0006%, то есть не соответствует формуле изобретения; выражение Сэф+0,05[Р]=0,00028+0,003=0,00328%>0,003%, то есть соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 600°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 60°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 700°С со скоростью около 35°С/час (вариант не соответствует формуле изобретения по значению выражения (1)).

Вариант 7 - сталь, содержащая 0,0045% углерода, 0,010% кремния, 0,16% марганца, 0,040% фосфора, 0,009% серы, 0,03% алюминия, 0,004% азота, 0,008% титана, 0,020% ниобия, железо и неизбежные примеси остальное, при этом выражение Сэф=[С]-СTi-CNb=0,0045-0,0026=0,0019%>0,0006%, то есть соответствует формуле изобретения выражение Сэф+0,05[Р]=0,0019+0,0020=0,0039%>0,003% также соответствует формуле изобретения. Температура смотки горячекатаных полос в рулоны составляла 680°С, скорость нагрева при отжиге в колпаковой печи до 450°С около 40°С/ч, затем до 550°С около 25°С/час, далее до температуры отжига 720°С со скоростью около 35°С/час (вариант не соответствует формуле изобретения по значениям температуры смотки и скорости нагрева при отжиге до 450°С).

Механические испытания образцов холоднокатаного проката из стали указанных плавок проводили на электромеханической испытательной машине INSTRON-1185. Размеры образца составляли 20×120 мм.

Испытания проводили в полуавтоматическом режиме с тензометром продольной деформации (база тензометра 12,5 мм). Скорость растяжения составляла 10 мм/мин.

В случае кривых растяжений без физического предела текучести величину предела текучести определяли по показаниям тензометра с учетом линейного участка диаграммы растяжения (кроме этого, для контроля использовали анализ машинной диаграммы растяжения).

Коэффициент деформационного упрочнения n определяли в диапазоне деформации от 10 до 17%.

Коэффициент нормальной пластической анизотропии r определяли при остановке испытаний (при достижении 17%) путем замера вручную ширины образца (в трех сечениях).

Для образцов шириной 20 мм относительное удлинение δ4 определяли на базе 80 мм (A80).

Испытания для определения упрочнения стали при сушке лакокрасочного покрытия (ВН-эффект) проводили в следующей последовательности:

1) образцы растягивали до величины деформации 2%, которую определяли по экстензометру (база 26 мм); при этом определяли σ2 - напряжение при деформации 2%;

2) образцы помещали в печь, нагретую до температуры 170±10°С, и выдерживали в течение 20 минут;

3) образцы испытывали на растяжение, определяя величину ВН-эффекта, как разницу между пределом текучести σт (ВН) и σ2.

Результаты механических испытаний приведены в таблице. Определяли основные механические характеристики: предел текучести σт, временное сопротивление σb, относительное удлинение δ4, коэффициент нормальной пластической анизотропии r и коэффициент деформационного упрочнения n. Критерием обеспечения требуемой штампуемости считали получение значения относительного удлинения не менее 40%, значения коэффициента нормальной пластической анизотропии r не менее 2,0 и значение коэффициента деформационного упрочнения n не менее 0,20. При этом стремились обеспечить величину ВН-эффекта не мене 40 Н/мм2.

Для стали по вариантам 1-4 получены требуемые показатели штампуемости и величины ВН-эффекта. Для варианта 5 несмотря на присутствие свободного углерода в твердом растворе перед началом охлаждения, из-за низкого содержания фосфора углерод выделяется при охлаждении в виде цементита, что приводит к отсутствию склонности стали к ВН-эффекту. Для варианта 6 из-за невыполнения условия (1) еще до начала охлаждения основная часть углерода оказывается связанной в карбид ниобия или титана, что приводит к отсутствию ВН-эффекта. Для варианта 7 высокая температура смотки и низкая скорость охлаждения до температур начала рекристаллизации приводят к выделению азота в виде нитрида алюминия еще до начала рекристаллизации, что отрицательно влияет на штамппуемость: снижаются значения r и относительного удлинения. Таким образом, только холоднокатаная сталь, полученная по вариантам 1, 3, 4 и горячеоцинкованная по варианту 2, соответствующим формуле изобретения, имеют высокие показатели штампуемости и величины ВН-эффекта.

То есть использование настоящего предложения существенно повышает величину ВН-эффекта стали даже после рекристаллизационного отжига в колпаковой печи при сохранении высокой штампуемости.

Таблица

Результаты механических испытаний сталей, полученных по использованным вариантам
№№ вариантаσт, Н/мм2σв, Н/м2δ4, %rnВН-эффект, Н/мм2
1220305402,20,2250
2220345402,20,2150
3210320412,20,2140
4220340402,10,2245
5180290482,20,210
6230350362,00,200
7210310361,80,2045

1. Способ производства холоднокатаной стали для холодной штамповки, включающий выплавку стали, содержащей углерод, марганец, фосфор, серу, алюминий, азот, ниобий, железо и неизбежные раскислители и примеси, разливку, горячую прокатку, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг и, при необходимости, нанесение покрытия, отличающийся тем, что выплавляют сталь, дополнительно содержащую титан, при следующем соотношении компонентов, мас.%:

углерод0,002÷0,015
кремний0,005÷0,050
марганец0,05÷1,0
фосфор0,005÷0,09
сера0,003÷0,020
алюминий0,02÷0,07
азот0,002÷0,007
титан0,0005÷0,040
ниобийне более 0,060
железо и неизбежные примесиостальное,

при выполнении условий

Сэф.=[С]-СTiNb≥0,0006% и Сэф.+0,05[Р]≥0,003%,

где Сэф. - эффективное содержание углерода, не связанного титаном или ниобием,

[С] - общее содержание углерода в стали,

СTi - содержание углерода, связанного титаном, причем СTi=0 при [Ti]/[N]<3,43 и CTi=([Ti]-3,43N)/4 при [Ti]/[N]≥3,43,

СNb - содержание углерода, связанного ниобием, CNb=Nb/7,74,

[Р] - содержание фосфора в стали.

2. Способ по п.1, отличающийся тем, что смотку полосы в рулоны ведут при температуре не более 650°С.

3. Способ по п.2, отличающийся тем, что рекристаллизационный отжиг ведут в колпаковой печи при температуре не ниже 700°С с регламентированным нагревом: сначала до 450-500°С со скоростью не менее 50°С/ч, затем по крайней мере до 550-600°С со скоростью не более 30°С/ч, далее со скоростью не более 50°С/ч до температуры отжига.



 

Похожие патенты:

Изобретение относится к области металлургии и может быть использовано при изготовлении сталей, применяемых в автомобилестроении. .
Сталь // 2312922
Изобретение относится к области черной металлургии и может быть использовано в машиностроении. .
Изобретение относится к сварке и касается состава сварочной проволоки для сварки и наплавки изделий из низколегированных конструкционных сталей, работающих при больших знакопеременных нагрузках и низких температурах, и может быть использовано преимущественно для изделий тяжелого машиностроения, эксплуатирующихся в условиях Сибири и Крайнего Севера.
Изобретение относится к металлургии, а именно к разработке стали для изготовления крупных деталей горно-металлургического производства, работающих в условиях повышенного ударного нагружения и абразивного изнашивания, например, брони для конусных дробилок крупного дробления, конусные воронки засыпных аппаратов и др.
Изобретение относится к области металлургии, в частности к производству сортового проката в прутках, калиброванного круглого, из среднеуглеродистой стали повышенной обрабатываемости резанием, используемого для изготовления штоков амортизаторов.
Изобретение относится к области металлургии, в частности к производству сортового проката в прутках, калиброванного круглого, из среднеуглеродистой стали повышенной обрабатываемости резанием, используемого для изготовления штоков амортизаторов.

Изобретение относится к металлургии, в частности к дисперсионно-твердеющей аустенитной стали, обладающей эффектом памяти формы (ЭПФ), которую можно использовать, например, при изготовлении муфт при бесшовном соединении трубопроводов, топливопроводов и при изготовлении силовых блоков в различного рода охранной и противопожарной автоматике.
Изобретение относится к металлургии, а именно к прецизионным литейным сплавам с низким тепловым расширением, и может быть использовано в летательных аппаратах, в оптоэлектронной технике, лазерной технике в прецизионном приборостроении, в частности, для изготовления деталей, работающих в контакте с кварцем, кремнием, карбидом кремния и др.

Изобретение относится к металлургии, а именно к литейным сплавам с низким тепловым расширением. .
Изобретение относится к сварке и касается состава сварочной проволоки для сварки и наплавки изделий из высокоуглеродистых сталей, работающих при больших знакопеременных нагрузках, и может быть использовано, преимущественно, при восстановлении узлов и деталей железнодорожного подвижного состава.

Изобретение относится к области металлургии и может быть использовано при изготовлении сталей, применяемых в автомобилестроении. .

Изобретение относится к области металлургии, конкретнее к технологии изготовления холоднокатаных полос из стабилизированной алюминием нестареющей малоуглеродистой стали с высокими вытяжными свойствами для холодной штамповки деталей легковых автомобилей.

Изобретение относится к области металлургии, конкретнее к технологии изготовления холоднокатаных полос из конструкционной углеродистой качественной стали для холодной штамповки.
Изобретение относится к черной металлургии и может быть использовано при производстве листового и профильного проката. .

Изобретение относится к области металлургии и может быть использовано при изготовлении сталей, применяемых в автомобилестроении. .
Изобретение относится к обработке металлов давлением, в частности к технологии горячей прокатки стали для эмалирования. .
Изобретение относится к области металлургии и может быть использовано в производстве полосовой низкоуглеродистой стали, в частности черной жести с нормированной твердостью.
Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных полос, предназначенных для последующей переработки в холоднокатаную продукцию для эмалирования.

Изобретение относится к черной металлургии, в частности к производству листового проката из качественных конструкционных низкоуглеродистых сталей типа 08Ю и свернизкоуглеродистых типа IF сталей.

Изобретение относится к черной металлургии, а именно к производству сталей для холодной листовой штамповки, преимущественно деталей автомобилей. .

Изобретение относится к области металлургии и может быть использовано при изготовлении сталей, применяемых в автомобилестроении
Наверх