Способ изготовления и контроля качества резинотехнических изделий для газовой центрифуги и коммуникаций каскада газовых центрифуг

Изобретение относится к способу изготовления резинотехнических изделий для вакуумных систем, в частности для резин с пониженной влагопроницаемостью, стойких к газообразным фторидам элементов и фтористому водороду, применяемых в газовой центрифуге. Способ изготовления и контроля качества резинотехнических изделий для газовой центрифуги и коммуникаций каскада газовых центрифуг заключается в формовке изделий из резиновой смеси, вулканизации резинотехнических изделий, сушке и контроле. Сушку производят в условиях высокотемпературного вакуума при температуре 0,6-1 от максимально допустимой температуры эксплуатации и давлении не более 0,08 мм рт.ст. (10 Па) в течение 1-4 суток для извлечения летучих компонент смеси. Контроль качества резинотехнических изделий производят по отношению массы продуктов гажения, собранных в низкотемпературную ловушку, охлаждаемую жидким азотом, к общей массе резинотехнических изделий. Способ обеспечивает уменьшение количества легколетучих примесей, которые выделяются из резинотехнических изделий в процессе эксплуатации газовой центрифуги и обеспечивает контроль качества материала резинотехнических изделий. 4 з.п. ф-лы.

 

Изобретение относится к способу изготовления резинотехнических изделий для вакуумных систем, в частности для резин с пониженной влагопроницаемостью, стойких к газообразным фторидам элементов и фтористому водороду, применяемых в газовой центрифуге.

Принципиальными требованиями к резинотехническим изделиям (РТИ), которые применяются для уплотнения соединений в газовых центрифугах, являются:

возможность использования в вакуумных системах - низкое значение проницаемости для газовых компонент воздуха (внутри коммуникаций и оборудования каскада газовых центрифуг давления существенно ниже атмосферного); диапазон рабочих температур - от отрицательных до 60-80°С; коррозионная стойкость по отношению к фторидам элементов и фтористому водороду, который появляется внутри установки при взаимодействии фторидов с парами воды. С этим связано дополнительное требование к РТИ для газовых центрифуг - они должны иметь минимально возможное значение влагопроницаемости («Смеси резиновые специальные марок 51-1787 и 51-1787 М.» Технические условия ТУ 2512-017-00152081-98, ОАО НИИЭМИ, 1998 г.).

Известен способ, по которому изготовленные детали отвечают указанным выше требованиям («Детали резинотехнические с пониженной влагопроницаемостью для вакуумных систем» Технические условия ТУ 2531-029-00152081-2002, ОАО НИИЭМИ, 2002 г.). В данном способе используется следующая цепочка операций: формовка изделий из резиновой смеси; вулканизация резинотехнических изделий при температуре 180°С в течение 10 минут; термостатирование РТИ, которое по сути является сушкой при атмосферном давлении в течение 1 часа при максимально допустимой для РТИ температуре 100°С.

Недостатком известного способа является выделение легколетучих примесей из РТИ в процессе эксплуатации газовой центрифуги, их попадание в коммуникации газовой центрифуги и перекрытие проходного сечения коммуникаций.

Кроме того, в известном способе контроль качества химического состава РТИ перед установкой в газовую центрифугу требует проведения длительных и дорогостоящих анализов, поэтому производится только выборочно и в случае необходимости.

Целью технического решения является уменьшение количества легколетучих примесей, которые выделяются из РТИ в процессе эксплуатации газовой центрифуги и контроль качества материала РТИ.

Сущность предлагаемого технического решения заключается в том, что в способе изготовления и контроля качества резинотехнических изделий для газовой центрифуги и коммуникаций каскада газовых центрифуг, заключающемся в формовке изделий из резиновой смеси, вулканизации резинотехнических изделий, сушке и контроле, сушку производят в условиях высокотемпературного вакуума при температуре 0,6-1 от максимально допустимой температуры эксплуатации и давлении не боле 0,08 мм рт.ст. (10 Па) в течение 1-4 суток для извлечения 70-100% легколетучих компонент смеси, контроль качества резинотехнических изделий производят по отношению массы продуктов гажения, собранных в низкотемпературную ловушку, охлаждаемую жидким азотом, к общей массе резинотехнических изделий.

Кроме того, высокотемпературную вакуумную сушку могут проводить после процесса термостатирования резинотехнических изделий при атмосферном давлении.

Кроме того, промежуток времени между окончанием процесса высокотемпературной вакуумной сушки и установкой резинотехнических изделий в газовую центрифугу составляет не более 1 суток.

Кроме того, длительное хранение перед установкой в газовую центрифугу резинотехнических изделий может производиться в вакуумированной герметичной таре.

Кроме того, длительное хранение перед установкой в газовую центрифугу резинотехнических изделий может производиться в герметичной таре, заполненной до атмосферного давления осушенным нейтральным газом или смесью газов.

Способ осуществляется следующим образом.

Комплект РТИ для установки в газовую центрифугу свободно размещается в специальной емкости, оборудованной системой вакуумной откачки продуктов гажения РТИ через ловушку, охлаждаемую жидким азотом, системой равномерного нагрева емкости по объему и широко известными приборами контроля и поддержания температуры процесса и измерения давления в емкости и системе откачки. Ёмкость нагревается до температуры 60±2°С при максимально допустимой температуре эксплуатации РТИ - 100°С. Эвакуация продуктов гажения производится при давлении не более 0,08 мм рт.ст. (10 Па). Процесс вакуумной высокотемпературной сушки производят в течение 1-4 суток. Контроль качества резинотехнических изделий производят по отношению массы продуктов гажения, собранных в низкотемпературную ловушку, охлаждаемую жидким азотом, к общей массе резинотехнических изделий, которое составило 0,3-0,45%.

В данном примере после проведения высокотемпературной вакуумной сушки в течение 4 суток уменьшение веса комплекта РТИ составило 0,31% от первоначальной массы комплекта РТИ. Взвешивание продуктов гажения, собранных в низкотемпературную ловушку, подтвердило это измерение. Изучение динамики процесса гажения показало, что за время проведения испытаний извлекается 70-80% легколетучих примесей в РТИ, которые без процедуры высокотемпературной вакуумной сушки будут поступать в газовую центрифугу в процессе ее эксплуатации. Возможно увеличение температуры процедуры высокотемпературной вакуумной сушки до 100°С, это увеличение дает возможность сократить время проведения процесса, но требует увеличения мощности нагревателей.

Как было установлено в исследованиях, величина отношения массы продуктов гажения РТИ к исходной массе деталей РТИ при проведении высокотемпературной вакуумной сушки при одинаковой температуре и длительности процесса является достаточно стабильной и характеризует качественный состав деталей РТИ. Вследствие этого, постоянство величины отношения массы продуктов гажения РТИ к исходной массе деталей РТИ (с точностью 10-30%) при проведении высокотемпературной вакуумной сушки является способом экспресс-контроля готовых РТИ, изготовленных из различных партий резинотехнической смеси: резкое изменение этого параметра свидетельствует об изменении состава резинотехнической смеси или технологии изготовления РТИ. Кроме того, высокотемпературную вакуумную сушку могут проводить после процесса термостатирования резинотехнических изделий при атмосферном давлении. В ходе исследований было определено, что химический состав продуктов гажения деталей РТИ, прошедших процедуру термостатирования и без проведения этой процедуры, практически не отличается и, соответственно, не изменяются эксплуатационные качества РТИ. Поскольку промежуток времени между операцией вулканизации и высокотемпературной вакуумной сушкой может составлять до 2 лет (в соответствии с Техническими условиями ТУ 2531-029-00152081-2002), процедура сушки РТИ при атмосферном давлении в течение 1 часа и температуре 100°С (термостатирование) непосредственно после вулканизации может быть использована для улучшения гигиенических условий хранения РТИ (уменьшение запаха) перед процессом высокотемпературной вакуумной сушки.

Кроме того, промежуток времени между окончанием процесса высокотемпературной вакуумной сушки и установкой резинотехнических изделий в газовую центрифугу составляет не более 1 суток. По результатам измерений массы комплекта деталей РТИ для газовой центрифуги, при хранении РТИ на воздухе в течение 24 часов перед установкой в газовую центрифугу, увеличение массы комплекта РТИ за счет поглощения влаги из атмосферы составляет менее 5-8% от массы извлеченных продуктов гажения, что практически не скажется на эксплуатации газовой центрифуги. При более длительном хранении на воздухе, увеличение массы комплекта РТИ за счет поглощения влаги из атмосферы может составлять до ˜50% от массы извлеченных продуктов гажения, что потребует повторения процедуры высокотемпературной вакуумной сушки перед установкой РТИ в газовую центрифугу. Поэтому длительное хранение РТИ перед установкой в газовую центрифугу необходимо производить в вакуумированной герметичной таре либо в герметичной таре, заполненной до атмосферного давления осушенным нейтральным газом, например воздухом, или азотом, или смесью осушенных нейтральных газов.

1. Способ изготовления и контроля качества резинотехнических изделий для газовой центрифуги и коммуникаций каскада газовых центрифуг, заключающийся в формовке изделий из резиновой смеси, вулканизации резинотехнических изделий, сушке и контроле, отличающийся тем, что сушку производят в условиях высокотемпературного вакуума при температуре 0,6-1 максимально допустимой температуры эксплуатации и давлении не более 0,08 мм рт.ст. (10 Па) в течение 1-4 суток для извлечения летучих компонент смеси, контроль качества резинотехнических изделий производят по отношению массы продуктов гажения, собранных в низкотемпературную ловушку, охлаждаемую жидким азотом, к общей массе резинотехнических изделий.

2. Способ изготовления и контроля качества резинотехнических изделий для газовой центрифуги и коммуникаций каскада газовых центрифуг по п.1, отличающийся тем, что высокотемпературную вакуумную сушку проводят после процесса термостатирования резинотехнических изделий при атмосферном давлении.

3. Способ изготовления и контроля качества резинотехнических изделий для газовой центрифуги и коммуникаций каскада газовых центрифуг по п.1, отличающийся тем, что промежуток времени между окончанием процесса высокотемпературной вакуумной сушки и установкой резинотехнических изделий в газовую центрифугу не более 1 суток.

4. Способ изготовления и контроля качества резинотехнических изделий для газовой центрифуги и коммуникаций каскада газовых центрифуг по п.1, отличающийся тем, что после высокотемпературной вакуумной сушки производится длительное хранение перед установкой в газовую центрифугу резинотехнических изделий в вакуумированной герметичной таре.

5. Способ изготовления и контроля качества резинотехнических изделий для газовой центрифуги и коммуникаций каскада газовых центрифуг по п.1, отличающийся тем, что длительное хранение перед установкой в газовую центрифугу резинотехнических изделий производится в герметичной таре, заполненной до атмосферного давления осушенным нейтральным газом или смесью осушенных нейтральных газов.



 

Похожие патенты:

Изобретение относится к способам для оценки эксплуатационных свойств топлив, в частности оценки совместимости топлив для реактивных двигателей (авиакеросинов) с резинами преимущественно на основе нитрильного каучука, применяемыми в топливных системах авиационных газотурбинных двигателей, и может быть использовано в нефтехимической, авиационной и других отраслях промышленности.

Изобретение относится к методам исследования свойств многослойных полимерных материалов, используемых для изготовления эластичных резервуаров, поддонов, рукавов, фильтроэлементов, трубопроводов, бочек, канистр, барабанов, внутренних покрытий и т.д.

Изобретение относится к легкой промышленности. .

Изобретение относится к технологии производства изделий из композиционного материала, например стеклопластика, методом намотки предварительно пропитанной нити, в частности к способам определения содержания связующего, и может быть использовано в химическом машиностроении и других отраслях промышленности, где требуется обеспечить стабильность показателей качества пропитки и технологически предусматривается контроль данного параметра.

Изобретение относится к исследованию топливостойких свойств полимерных конструкционных материалов для емкостей, арматуры трубопроводов, внутренних покрытий и т.д.

Изобретение относится к методам исследования прочностных свойств материалов уплотнительных колец для сборно-разборных нефтепродуктопроводов. .

Изобретение относится к сельскому хозяйству, в частности к молочному животноводству. .

Изобретение относится к пищевой промышленности и может найти применение на винных, ликероводочных и спиртовых производствах и других предприятиях пищевой, парфюмерной и других отраслей промышленности.
Изобретение относится к меховой промышленности и может быть использовано при выделке пушно-мехового и овчинно-шубного сырья. .

Изобретение относится к меховой промышленности и может быть использовано при выделке пушно-мехового и овчинно-шубного сырья для оценки качества пропикелеванности кожевой ткани.

Изобретение относится к легкой промышленности и может быть использовано при определении потостойкости капиллярно-пористых волокнистых и пленочных материалов, например натуральной и искусственной кожи

Изобретение относится к технологии резины, а именно к измерению и контролю параметров процесса вулканизации резиновых смесей, и может быть использовано в лабораторной практике и научных исследованиях в соответствующей технико-технологической области промышленности

Изобретение относится к методам оценки структурной неоднородности полимеров, в частности к способу выявления макронеоднородности структуры эластомеров

Изобретение относится к способу измерения совокупности технологических параметров химического процесса, осуществляемого в химическом реакторе

Изобретение относится к области исследований или анализа защитных свойств материалов лицевых частей противогазов при воздействии на них капель , '-дихлордиэтилсульфида (ДДС) путем использования его имитатора - бутил- -хлорэтилсульфида (БХЭС) в качестве вещества, моделирующего проникающую способность иприта

Изобретение относится к анализу технического углерода (сажи) и может быть использовано при разработке технологии получения новых марок сажи для резин

Изобретение относится к кожевенной промышленности
Наверх