Способ формирования и приема импульсных электромагнитных сигналов сверхкороткой длительности без несущей и устройство для его осуществления

Изобретение относится к способам формирования и приема импульсных электромагнитных сигналов сверхкороткой длительности без несущей и может использоваться в радиосвязных и радиолокационных системах ближнего действия. Техническим результатом является увеличение КПД и коэффициента направленного действия антенны, повышение помехоустойчивости и уменьшение энергетических затрат. В способе, включающем накопление потенциала электрического поля накопительным конденсатором, лавинный разряд накопительного конденсатора, прием и излучение электромагнитной волны приемо-излучательным элементом, операции генерирования, передачи и излучения импульсных сигналов совмещены по времени. Процесс накопления потенциала электрического поля накопительным конденсатором производят одновременно с накоплением потенциала электрического поля на входе приемника от волн тока, образующихся от импульсов принимаемой электромагнитной волны на двух разнесенных проводниках приемо-излучательного элемента, а лавинный разряд накопительного конденсатора производят одновременно с образованием волн тока в тех же проводниках, формирующих импульс излучаемой электромагнитной волны. Устройство для осуществления способа содержит генератор импульсов пилообразного тока, соединенный с накопительным конденсатором, лавинный диод, приемо-излучательный элемент, приемник. При этом приемо-излучательный элемент выполнен в виде двух разнесенных проводников, закороченных с одного из концов, а со входа последовательно соединенных с лавинным диодом и накопительным конденсатором и, через управляемый ограничитель, параллельно соединенных с входом приемника. 2 н. и 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к способам формирования и приема импульсных электромагнитных сигналов сверхкороткой длительности без несущей и применяется в радиосвязных и радиолокационных системах ближнего действия

Такие сигналы носят название сверхширокополосных короткоимпульсных сигналов. Их применение повышает скорость передачи информации, помехоустойчивость и уменьшает энергетические затраты. (Хармут Х.Ф. Несинусоидальные волны в радиолокации и радиосвязи. Пер. с англ. М.: Радио и связь, 1985).

В известных способах формирования и приема импульсных электромагнитных сигналов сверхкороткой длительности без несущей применяются традиционные для радиотехники, использующей несущую сигнала, разделенные последовательно во времени действия: генерирование электромагнитных импульсов генератором, передача их на антенну линией передачи и излучение антенной при формировании электромагнитных сигналов и, соответственно, прием электромагнитных импульсов антенной и передача их линией передачи на приемник при приеме электромагнитных сигналов. (Андреев Ю.А., Буянов Ю.И., Визирь В.А., Ефремов В.М., Зорин В.Б., Ковальчук Б.М., Кошелев В.И., Плиско В.В., Сухушин К.Н. Генератор гигаваттных импульсов сверхширокополосного излучения. Приборы и техника эксперимента. 2000. №2. с.52-88).

Использование таких разделенных по времени действий для формирования и приема импульсных электромагнитных сигналов сверхкороткой длительности без несущей приводит прежде всего к проблеме преобразования электрического сигнала в электромагнитный (однополярного импульса в биполярный), к проблеме согласования всех самостоятельных устройств друг с другом по импульсному сигналу, к малому коэффициенту направленного действия самостоятельной антенны (сверхширокополосной антенны).

Для увеличения направленности излучения и приема антенной приходится применять антенные решетки (Андреев Ю.А., Буянов Ю.И., Кошелев В.И.., Сухушин К.Н. «Элемент сканирующей антенной решетки для излучения мощных сверхширокополосных электромагнитных импульсов». Радиотехника и электроника, 1999 г., т.44. №5. с.531-537).

Данные элементы сканирующей антенной решетки для излучения мощных сверхширокополосных электромагнитных импульсов имеют малый коэффициент направленного действия. Объединение этих элементов в решетку позволяет повысить коэффициент направленного действия, но антенная система в результате становится громоздкой, возникает взаимовлияние элементов друг на друга, что уменьшает КПД и искажает сигналы.

Техническим результатом изобретения является увеличение КПД и коэффициента направленного действия антенны с обеспечением оптимальных размеров антенной системы.

С этой целью в способе формирования и приема импульсных электромагнитных сигналов сверхкороткой длительности без несущей, включающем накопление потенциала электрического поля накопительным конденсатором, лавинный разряд накопительного конденсатора, прием и излучение электромагнитной волны, процесс накопления потенциала электрического поля накопительным конденсатором производят одновременно с накоплением потенциала электрического поля на входе приемника от волн тока, образующихся от импульсов принимаемой электромагнитной волны на двух разнесенных проводниках приемо-излучательного элемента, а лавинный разряд накопительного конденсатора производят одновременно с образованием волн тока в тех же проводниках приемно-излучательного элемента, формирующих импульс излучаемой электромагнитной волны.

Устройство для реализации данного способа формирования и приема импульсных электромагнитных сигналов сверхкороткой длительности без несущей содержит генератор импульсов пилообразного тока, соединенный с накопительным конденсатором, лавинный диод (или газовый разрядник), приемо-излучательный элемент, приемник, причем приемо-излучательный элемент выполнен в виде двух разнесенных проводников, закороченных на одном из концов, а на входе последовательно соединенных с лавинным диодом и накопительным конденсатором и, через управляемый ограничитель, параллельно соединенных с входом приемника. При этом, если проводники разомкнуты на выходе, то на входе они закорочены через дроссель.

Таким образом, в предлагаемом способе операции генерирования, передачи и излучения импульсных сигналов совмещены по времени. Формирование электромагнитного импульса начинается в момент времени начала лавинного процесса и продолжается в течение времени распространения волн тока по проводникам приемно-излучательного элемента. Эти волны тока не только переносят энергию от накопительного конденсатора, но и излучают ее, создавая направленное излучение по направлению своего распространения. Энергия из накопительного конденсатора не поступает в приемник, параллельно подсоединенный к входу приемо-излучательного элемента через последовательно соединенное с приемником управляемое ограничительное устройство. Импульсный сигнал на вход приемника поступает от проводников приемо-излучательного элемента, на который действует подающая электромагнитная волна, в моменты времени накопления энергии в накопительном устройстве от источника при выключенном ограничительном устройстве. Таким образом, осуществляется временное разделение излучаемого антенной сигнала от принимаемого этой же антенной сигнала.

Совмещение операций генерирования, передачи, излучения и разделения импульсных сигналов позволяет решить проблему сверхширокополосности, повысить КПД и коэффициент направленного действия антенны и оптимизировать энергетические затраты.

Схема устройства, в котором реализуется предлагаемый способ, представлена на чертежах, где:

на фиг.1 приведена схема устройства с проводниками, закороченными на выходе,

на фиг.2 - схема устройства с проводниками, закороченными на входе.

Источник импульсов пилообразного тока (ИПТ) 1 (фиг.1) соединен через ограничительное сопротивление 2 с накопительным конденсатором 3, который через импульсный лавинный диод 4 соединен с входами (Вх) проводников 5 и 6 приемо-излучательного элемента (И). Входы проводников 5 и 6 приемо-излучательного элемента через управляемый ограничитель (О) 7 соединены с входами приемника (Пр) 8. Источник импульсов пилообразного тока 1 соединен также с устройством управления (УУ) 9 ограничителем 7. Проводники 5 и 6 приемо-излучательного элемента закорочены на одном из концов, а именно: или на входе (Вх), или на выходе (Вых). Причем в первом случае (на входе) они должны быть закорочены через дроссель (Др) 10 (фиг.2).

Устройство работает следующим образом. От источника импульсов пилообразного тока 1 через ограничительное сопротивление 2 осуществляется заряд накопительного конденсатора 3. Через закороченные выходы проводников 5 и 6 (фиг.1), или через дроссель 10 (фиг.2), напряжение на конденсаторе 3 запирает диод 4. Ток в проводниках 5 и 6 приемо-излучательного элемента очень мал и проводники выполняют функцию приемной антенны. Волны тока в проводниках, возбужденных электромагнитными импульсами волны из окружающего пространства, создают напряжение на входе приемника. Импульсы электромагнитной волны сначала возбуждают выходы проводников и продолжают передавать энергию импульсам тока в проводниках по мере продвижения их ко входу проводников. Этим обеспечивается направленность приема антенны.

При достижении запирающего напряжения на диоде 4 величины напряжения пробоя начинается лавинный процесс уменьшения сопротивления диода 4, сопровождающийся резким увеличением тока. Накопительный конденсатор 3 начинает быстро разряжаться. Напряжение на входе проводников 5 и 6 практически не меняется, но возникает импульс тока, который распространяется вдоль проводников от входа к выходу проводников. При этом энергия импульсов тока постепенно расходуется на излучение, направленное вдоль проводников.

По мере быстрого разряда накопительного конденсатора 3 сопротивление импульсного лавинного диода 4 восстанавливается. Большое сопротивление ограничителя 7 и, соответственно, малое напряжение на входе проводников 5 и 6 приемо-излучательного элемента во время разряда накопительного конденсатора 3 препятствуют перегрузке приемника 8 во время излучения. Накопительный конденсатор 3 снова начинает заряжаться. Скорость нарастания пилообразного тока и постоянная времени заряда накопительного конденсатора определяют период повторения излучаемых импульсов. Сопротивление ограничителя 7 в цепи приемника 8 убывает во времени от начала периода повторения до его конца. При этом увеличивается по линейному закону чувствительность приемника для сигналов от удаленных от устройства объектов.

Приемо-излучательный элемент из двух близкорасположенных проводников представляет антенну с бегущей волной магнитного тока. Расстояние «d» между проводниками, их форма и длина «L» подбираются в зависимости от формы и пространственной длительности импульсного электромагнитного сигнала, обеспечивая его эффективное направленное излучение.

Реализация предлагаемого способа позволяет повысить КПД и коэффициент направленного действия антенны и оптимизировать энергетические затраты.

1. Способ формирования и приема импульсных электромагнитных сигналов сверхкороткой длительности без несущей, включающий накопление потенциала электрического поля накопительным конденсатором, лавинный разряд накопительного конденсатора, прием и излучение электромагнитной волны приемоизлучательным элементом, отличающийся тем, что процесс накопления потенциала электрического поля накопительным конденсатором производят одновременно с накоплением потенциала электрического поля на входе приемника от волн тока, образующихся от импульсов принимаемой электромагнитной волны на двух разнесенных проводниках приемоизлучательного элемента, а лавинный разряд накопительного конденсатора производят одновременно с образованием волн тока в тех же проводниках, формирующих импульс излучаемой электромагнитной волны.

2. Устройство для осуществления способа формирования и приема импульсных электромагнитных сигналов сверхкороткой длительности без несущей, содержащее генератор импульсов пилообразного тока, соединенный с накопительным конденсатором, лавинный диод, приемоизлучательный элемент, приемник, отличающееся тем, что приемоизлучательный элемент выполнен в виде двух разнесенных проводников, закороченных с одного из концов, а с входа последовательно соединенных с лавинным диодом и накопительным конденсатором и, через управляемый ограничитель, параллельно соединенных с входом приемника.

3. Устройство для осуществления способа формирования и приема импульсных электромагнитных сигналов сверхкороткой длительности без несущей по п.2, отличающееся тем, что проводники закорочены на выходе.

4. Устройство для осуществления способа формирования и приема импульсных электромагнитных сигналов сверхкороткой длительности без несущей по п.2, отличающееся тем, что проводники разомкнуты на выходе, а на входе закорочены через дроссель.



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано в системах радиопеленгации и радиосвязи. .

Изобретение относится к области радиотехники, в частности к антенной технике, и может быть использовано при проектировании антенных решеток для систем связи, локации и радиоэлектронной борьбы.

Изобретение относится к антенной технике и может быть использовано как приемные антенны в радиовещании, радиосвязи и радиопеленгации. .

Изобретение относится к радиотехнике СВЧ и может быть использовано в радиолокационных антеннах частотного сканирования. .

Изобретение относится к микрополосковым антенным решеткам СВЧ-диапазона для использования в радиолокаторах, радиоинтроскопах, медицинских аппаратах, системах приема и передачи информации.

Изобретение относится к моноимпульсным антенным устройствам (АУ) с суммарно-разностной обработкой сигнала, используемым в радиолокационных системах точного автоматического сопровождения цели и в обзорных моноимпульсных радиолокационных системах.

Изобретение относится к области радиотехники, в частности к антенной технике и может использоваться при проектировании антенных решеток (АР) для систем связи, локации и радиоэлектронной борьбы метрового диапазона длин волн.

Изобретение относится к радиотехнике и может быть использовано в качестве приемной и/или передающей подземной фазированной антенной решетки (ПФАР). .

Изобретение относится к антенной технике и предназначено для преобразования линейно-поляризованной электромагнитной волны в электромагнитную волну с круговой поляризацией вне зависимости от ориентации плоскости линейной поляризации падающей электромагнитной волны при заданном направлении распространения падающей волны

Изобретение относится к радиотехнике СВЧ и может быть использовано в обзорных трассовых радиолокаторах

Изобретение относится к радиотехнике СВЧ и может быть использовано в РЛС

Изобретение относится к антенной технике и может быть использовано для создания в условиях завода-изготовителя вибраторных, фазированных или цифровых антенных решеток (АР) для приема/передачи сигналов в метровом диапазоне частот различной поляризации в широком секторе однолучевого сканирования по срокам и стоимости на порядок меньшими, чем создание существующих крупногабаритных АР

Изобретение относится к конструктивному исполнению элементов радиотехнических систем и может быть использовано в качестве антенно-мачтового устройства для радиорелейных станций, работающих в полевых условиях

Изобретение относится к антенной технике преимущественно в СВЧ-диапазоне волн. Технический результат - повышение разрешающей способности антенны и увеличение точности пеленгации целей. Для этого в способе определения параметров антенны многоканальной радиолокационной станции сигналы, поступающие по каждому из каналов, оцифровывают, находят параметр антенны, определяемый как сумма действительной (мнимой) части отношения двух диаграмм направленности, полученных от различных участков антенны, и абсолютного значения этой части, называют его трансфункцией и с помощью трансфункций путем их перемножения ограничивают до требуемой величины область исследуемого пространства. С помощью трансфункций можно, в частности, получить от антенн с данным раскрывом эквивалент диаграммы направленности, ширина которого в 4 раза уже, чем ширина классической диаграммы направленности по половинному значению мощности при равномерном синфазном распределении поля в раскрыве. 21 ил.

Изобретение относится к управлению угловым движением космических аппаратов. Для разгрузки системы силовых гироскопов от накопленного кинетического момента используют токовые контуры фазированной антенной решетки (ФАР). По магнитным моментам этих контуров определяют суммарное значение магнитного момента ФАР в каждом режиме ее работы. Затем вычисляют разгрузочные моменты, создаваемые взаимодействием магнитных моментов ФАР с магнитным полем Земли. При выполнении условия разгрузки определяют подходящий режим работы ФАР с требуемым разгрузочным моментом и проводят разгрузку. Техническим результатом изобретения является повышение эффективности разгрузки системы силовых гироскопов. 5 ил.

Изобретение относится к радиосвязи. Технический результат - повышение эффективности воздействия сверхкоротких электромагнитных импульсов на средства широкополосной радиосвязи без увеличения напряженности электромагнитного поля. В способе варьируются амплитуда и частота повторения импульсов и одновременно регистрируются последствия их воздействия, при этом формируют пакеты импульсов при неизменной амплитуде и напряженности электрического поля, следующие с той же частотой повторения, при этом количество импульсов и временная задержка между импульсами в пакете имитируют состояния полезного модулированного сигнала, а частота следования пакетов имитирует символьную скорость передаваемой информации, при этом эффективность воздействия на средства широкополосной связи достигает максимальных значений при соблюдении следующих условий: количество импульсов сопоставимо с максимальным количеством состояний фазомодулированного сигнала. 3 ил.

Изобретение относится к радиосвязи и может быть использовано для обеспечения высокоскоростных соединений типа «точка-точка» при работе радиорелейных станций в миллиметровом диапазоне длин волн. Технический результат - повышение эффективности излучения и уменьшение потерь сигнала. Устройство содержит диэлектрическую линзу с плоской поверхностью, первичные излучатели и линии передачи и переключающую схему для подачи электрической мощности по меньшей мере на один первичный излучатель, при этом первичные излучатели и линии передачи выполнены на высокочастотной диэлектрической плате, установленной на плоской поверхности линзы, а переключающая схема электрически соединена с первичными излучателями линиями передачи и установлена на высокочастотной диэлектрической плате. 3 н. и 15 з.п. ф-лы, 9 ил.

Антенна // 2607769
Антенна (100) включает в себя слой (1) антенны, соединительный слой (2) и слой (10) фидерного тракта. Слой (1) антенны включает в себя рупорные антенны (51-53). Рупорные антенны (51, 52) размещаются таким образом, чтобы их центры были выровнены в направлении (C). Рупорная антенна (53) размещается таким образом, чтобы рупорная антенна (53) располагалась отдельно от рупорной антенны (51) в направлении (D), и центры рупорных антенн (51) и (53) не были выровнены в направлении (D). Волновод образован в соединительном слое (2). 6 з.п. ф-лы, 7 ил.
Наверх