Состав для нитроцементации изделий из легированных сталей

Изобретение относится к области металлургии, в частности к химико-термической обработке деталей, оснастки и инструмента. Состав содержит следующее соотношение компонентов, об. %: карбамид 10-15, трилон 10-15, триэтаноламин 10-15, древесноугольная основа - остальное. В качестве древесного угля состав может содержать толченый отработанный древесноугольный карбюризатор, или уголь ольховый толченый, или древесные опилки. Ускоряется формирование упрочненного слоя, улучшается его качество и повышается износостойкость. 3 з.п. ф-лы, 6 ил.

 

Изобретение относится к области металлургии, в частности к химико-термической обработке деталей, оснастки и инструмента. Предложенный способ может найти применение при упрочнении мелкоразмерных деталей в машиностроении, приборостроении, текстильной промышленности и ремонтных малых предприятиях и участках.

Известны составы смесей и паст для цементации на основе древесноугольных саж, пыли с добавкой карбонатов натрия, калия, бария (под ред. Л.С.Ляховича. Справочник. Химико-термическая обработка металлов и сплавов. М.: Металлургия, 1981, с.15-18).

Составы недостаточно универсальны и технологичны, а также не обеспечивают стабильного насыщения углеродом легированных сталей, особенно высокохромистых.

Известен состав, содержащий гранулы древесного угля, карбонат натрия и карбамид (патент РФ №2205892, МПК С23С 8/76, БИ №16, 2003).

Состав более эффективен для высокохромистых сталей, неприменим в высокотемпературной нитроцементации при 940-970°С, не исключает неравномерного насыщения слоя и внутреннего окисления поверхности, а также требует заключительного шлифования рабочих поверхностей для достижения лучшей износостойкости.

Известен состав в виде пасты, содержащий сажу и до 55% карбамида (мочевины) (NH2)2CO, применимый в интервалах температур нитроцементации, карбонитрирования 550-600°С (патент РФ №2254396, МПК С23С 8/76, БИ №17, 2005).

Состав недостаточно эффективен при высокотемпературной нитроцементации и применим к ограниченному количеству высоколегированных сталей, например высокохромистых с содержанием 13-17% хрома.

Наиболее близким к заявляемому является состав на основе древесных углей с азотоуглеродосодержащими добавками в виде карбамида и трилона-Б, применяемый для никотрирования сталей при 660-720°С («Технология машиностроения». 2004, №6, с.19-23. «Ресурсосберегающие технологии упрочнения деталей никотрированием в активированных древесноугольных смесях»).

Недостатками известного решения являются невысокая скорость формирования диффузионных слоев и недостаточная степень насыщения слоев азотом и углеродом в низко- и среднетемпературной областях 500-700°С.

Изобретение направлено на сокращение технологического процесса химико-термической обработки путем ускорения формирования упрочненного слоя, улучшение его качества, повышение его износостойкости, а также расширение областей применения состава для изделий из легированных сталей различных классов.

Для получения необходимого технического результата в известный состав для нитроцементации изделий из сталей, содержащий древесноугольную основу и азотоуглеродосодержащие добавки - карбамид и трилон-Б - вводят дополнительную добавку - триэтаноламин. Соотношение компонентов в составе выбирают следующее, об. %:

карбамид (мочевина)10-15
трилон-Б10-15
триэтаноламин10-15
древесноугольная основаостальное

Сущность предложенного технического решения, позволяющего достичь максимального положительного эффекта, состоит в том, что одновременное введение в активированную древесноугольную основу добавок - карбамида (NH2)2СО, трилона-Б (C10H8О10)Na2N2, триэтаноламина (С2Н4ОН)3N - выбранных равных соотношениях качественно изменяет в составе создающейся атмосферы пиролиза компонентов атомное содержание основных диффундирующих активных элементов - атомарных азота и углерода- в широком интервале температур обработки от 500 до 1000°С. Количество кислорода для формирования атмосферы с высоким содержанием окиси углерода СО повышается, как и количество натрия - элемента рыхлителя поверхностных пленок на легированных сталях. Активные продукты диссоциации карбамида, трилона, триэтаноламина СО, СН4, СО2, NH3 в присутствии избыточного углерода древесноугольной основы обеспечивают высокий углеродный и азотный потенциал насыщающей среды в интервалах температур, принятых при нитроцементации легированных сталей, конструкционных, инструментальных, нержавеющих, теплостойких.

Увеличение количества активаторов более 15% каждого не приводило к существенному ускорению процессов диффузионного насыщения слоев углеродом и азотом, но при температурах нитроцементации выше 800°С вызывало более глубокое внутреннее окисление поверхности. Это приводило к необходимости снятия этого слоя шлифованием на глубину 50-80 мкм, что повышало трудоемкость заключительной доводки деталей и инструмента после нитроцементации.

Высокий углеродный и азотный потенциал атмосферы, формирующийся в упаковочных контейнерах при нитроцементации, обеспечивается диссоциацией активирующих компонентов в присутствии избыточной древесноугольной составляющей. Диссоциации протекают по следующим реакциям:

триэтаноламин:2Н4ОН)3N→3СО+3СН4+0,5N2+1,5Н2
карбамид:(NH2)2CO→NH3+СО+0,5Н2+0,5N2
трилон-Б:(C10H8O10)Na2N2→9СО+N2+Na2O+2Н2+СН4
и:NH3→Nат+1,5Н2 и 2СО→Сат+СО2

Достигаемый потенциал по углероду выше 2,2-2,8% и по азоту до 0,5% позволяет получать плотные, насыщенные карбидные и карбонитридные слои на сложнолегированных и высокохромистых трудноцементуемых сталях во всех изученных интервалах температур 500-650°С, 660-860°С, 890-950°С, практически во всех технически необходимых для нитроцементации сталей различной степени легирования, различных классов и назначения.

На приведенных фотографиях изображено:

фиг.1 - микроструктура слоя после высокотемпературной нитроцементации изделия из стали 14Х17Н2, полученного при использовании предлагаемого состава при нагреве для закалки при 960°С;

фиг.2 - микроструктура слоя после высокотемпературной нитроцементации изделия из стали ШХ15, полученного при использовании предлагаемого состава при нагреве для закалки при 850°С;

фиг.3 - микроструктура слоя после нитроцементации изделия из стали 4Х3ВМФ с использованием предлагаемого состава при температуре 560°С;

фиг.4 - макроструктура слоя после нитроцементации изделия из стали 3Х3МФА в процессе нагрева для закалки при температуре 960°С с использованием предлагаемого состава;

фиг.5 - микроструктура слоя после нитроцементации изделия из стали Р6М5 при температуре 550-560°С с использованием предлагаемого состава;

фиг.6 - микроструктура слоя после нитроцементации изделия из стали марки 16Х-ВИ с применением предложенного состава при температуре 620°С.

Пример 1. Пуансоны-толкатели пресс-форм литьевых машин прессования тары из полимерных материалов изготовляли из стали 4Х3ВМФ и после закалки на твердость (HRCэ=44-46) проводили нитроцементацию в печах СШОЛ-ВНЦ с засыпкой в составе, содержащем 12% карбамида, 12% трилона-Б, 12% триэтаноламина, остальное гранулированный активированный древесный (березовый) уголь. После нитроцементации при 560°С 6 часов формировался диффузионный слой толщиной 350 мкм с микротвердостью НУ=980-990, прочно связанный с основой (фиг.3). Износостойкость выталкивателей возросла в 2,3 раза в сравнении с известным способом. За счет повышения скорости азотонауглероживания трудоемкость обработки снизилась в 1,5 раза, практически исключено хрупкое разрушение поверхностного слоя, характерное для аналогичных известных процессов.

Пример 2. Пуансоны со сферической частью вибростендов испытания электрических реактивных двигателей малой тяги изготовляли из стали ЗХЗМФА и нитроцементовали в процессе нагрева для закалки при температуре 960°С 2,5 часа в смеси предложенного состава. Количество активирующих азотоуглеродосодержащих и натрийазотоуглеродосодержащих добавок к отработанному древесноугольному карбюризатору составляло 10% карбамида, 10% трилона-Б, 10% триэтаноламина. Смесь легко приготавлялась насыпным методом из расчета 2-3 см3 смеси на квадратный сантиметр поверхности обрабатываемых деталей. После закалки в масле от температур нитроцементации и отпуска 375-380°С в течение 3 часов пуансоны имели высокопрочную основу и износостойкий поверхностный слой, макроструктура показана на фиг.4. После индукционного отпуска крепежной части срок службы пуансона повысился в 1,8 раза в сравнении с известным способом обработки. Так, микротвердость слоя составляла НУ=814-907, твердость основы НУ=470-510, ударная вязкость составляла 32-35 Дж/см2 при прочности на изгиб 1900-2020 МПа. При снижении количества активаторов ниже 10% наблюдалось более быстрое истощение смеси по азоту до 0,04-0,03% через 4 часа работы при 960°С и снижение количества карбидов в слое их срастания до 50-52% по площади. Тип карбидов в слое не изменялся, это (Fe, Cr)7С3, (Fe, Cr)3С, а количество карбонитридов (Fe, Cr)7(CN)3 снижалось. Применение смеси предложенного состава позволило также снизить затраты на электроэнергию и компоненты для ее приготовления на 30-40%.

Пример 3. Сверла вышлифованные, часовые, малого диаметра 0,8-1,2 мм из стали Р6М5 подвергали нитроцементации при температуре 550-560°С в течение 60 минут в составе, содержавшем 15% карбамида, 15% трилона-Б, 15% триэтаноламина, остальное толченый древесный ольховый уголь. В результате обработки на режущих поверхностях был сформирован трехзонный диффузионный слой весьма высокой износостойкости и твердости (фиг.5).

Микротвердость слоя повысилась до НУ0,5H=1230-1280, скорость формирования слоя достигла 30-40 мкм/ч, практически выше, чем во всех известных составах для нитроцементации в низкотемпературной области. Износостойкость сверл при обработке электротехнических композитов, а также скоростном сверлении янтаря повысилась в 1,8-2 раза. Диффузионный слой был равномерен по всем поверхностям, исключено шелушение и отслаивание.

Пример 4. Якоря из магнитомягкой электротехнической стали с 16% хрома марки 16Х-ВИ нитроцементовали с применением предложенного состава с заполнением пазов пастообразной смесью из толченого отработанного древесноугольного карбюризатора с добавкой активаторов карбамида, трилона-Б, триэтаноламина по 14% каждого. Обработку проводили в процессе стабилизирующего отжига при 620°С в течение 4 часов, охлаждение в контейнере с печью. Обработка позволила получить на контактных поверхностях трения плотный диффузионный слой с высокой твердостью и износостойкостью (фиг.6). Количество углерода в слое не превышало 1,41%, а количество азота было 0,45%, микротвердость слоя была НУ0,5Н=161-165. Ресурс работы клапанов повысился в 4,5 раза, магнитные свойства основного металла сохранились на уровне требуемых по ГОСТ. Таким образом, практически на трудно упрочняемой карбонитрируемой стали 16Х-ВИ получены однородные, качественные слои с повышенными эксплуатационными свойствами, превосходящие по свойствам при обработке в известных составах.

Практика применения разработанного состава в мелкосерийном приборном производстве ЭРД МТ и местной промышленности региона показала его эффективность, универсальность и экономическую целесообразность применения при упрочнении сталей 20Х13, 16-ХВИ, 14Х17H2, 25Х17Н2Б, ЗХЗВМФ, 4Х5МФС, Р6М5, Р12, Р6М5К5.

1. Состав для нитроцементации изделий из легированных сталей, содержащий древесноугольную основу и азотоуглеродосодержащие добавки - карбамид и трилон-Б, отличающийся тем, что он дополнительно содержит азотоуглеродосодержащую добавку - триэтаноламин, при следующем соотношении компонентов, об.%:

карбамид10-15
трилон-Б10-15
триэтаноламин10-15
древесноугольная основаостальное

2. Состав по п.1, отличающийся тем, что в качестве древесноугольной основы он содержит толченый отработанный древесноугольный карбюризатор.

3. Состав по п.1, отличающийся тем, что в качестве древесноугольной основы он содержит уголь ольховый толченый.

4. Состав по п.1, отличающийся тем, что в качестве древесноугольной основы он содержит древесные опилки.



 

Похожие патенты:
Изобретение относится к химико-термической обработке металлов и сплавов, в частности к процессам скоростной нитроцементации в пастах. .

Изобретение относится к области металлургии, в частности к термической и химико-термической обработке деталей из магнитомягкой высокохромистой стали, используемой для изготовления корпусов, магнитопроводов, сердечников электромагнитных клапанов подачи рабочих газов в электрических реактивных двигателях малой тяги.
Изобретение относится к химико-термической обработке металлов, в частности к составам паст, применяемых для цианирования деталей оборудования на предприятиях машиностроительной и металлургической промышленности.

Изобретение относится к металлургии, в частности к химико-термической обработке углеродистых и легированных сталей и изделий из них, и может найти применение в автотракторостроении, ремонте и восстановлении двигателей пар трения в условиях машиностроительных предприятий серийного и опытного производств, а также в инструментальных производствах большинства отраслей промышленности.

Изобретение относится к области металлургии, в частности к химико-термической обработке деталей и инструментов, и может найти применение в машиностроении, инструментальной промышленности.

Изобретение относится к области металлургии, в частности к химико-термической обработке деталей с формированием диффузионных и поверхностных слоев с повышенной износостойкостью и высокой прирабатываемостью в условиях трения металла о металл, и может быть использовано в машиностроении

Изобретение относится к области металлургии, а именно к способам химико-термической обработки сталей, и может быть использовано в машиностроении для упрочнения стальных мелкоразмерных деталей и инструмента

Изобретение относится к области металлургии, в частности к изготовлению упрочняемого химико-термической обработкой концевого инструмента из титановых сплавов, предназначенного для шлифования, резания и доводки прецизионных деталей из мягких термостойких керамик, и может быть использовано в приборостроении, электронике и ювелирном деле

Изобретение относится к области металлургии, в частности к химико-термической обработке деталей, инструмента, оснастки в твердых карбюризаторах

Изобретение относится к химико-термической обработке металлов и сплавов, может быть использовано для поверхностного упрочнения деталей машин и инструмента из штамповых сталей в машиностроительной, металлургической, химической, инструментальной и других отраслях промышленности. Способ нитроцементации деталей из штамповых сталей включает приготовление пасты смешиванием, нанесение пасты на детали и нагрев с выдержкой. При смешивании пасты в нее дополнительно вводят пастообразователь - нитроцеллюлозный лак НЦ 222 и газовую сажу ДГ-100 при следующем соотношении компонентов, мас.%: железосинеродистый калий K4Fe(СN)6 - 20-30, нитроцеллюлозный лак НЦ 222 - 15-20, газовая сажа ДГ-100 - остальное. Нагрев проводят до температуры 680°C с выдержкой при этой температуре в течение 3 часов, затем детали охлаждают в масле и подвергают низкому отпуску при температуре 200°C в течение 2 часов. Обеспечивается повышение пластичности нитроцементованных диффузионных слоев и ударной вязкости, что приводит к повышению эксплуатационной стойкости штампа. 1 табл., 1 пр.

Изобретение относится к области цементации стальных изделий и может быть использовано для поверхностного упрочнения деталей машин и механизмов путем их термообработки в среде твердого карбюризатора. Карбюризатор для цементации изделий из низкоуглеродистой стали содержит высокодисперсную сажу в виде побочного продукта неполного сгорания природного газа в газоиспользующем теплогенерирующем оборудовании газораспределительных и компрессорных станций магистральных газопроводов, чугунную стружку со средним размером гранул 0,5 мм и карбонат бария, при следующем соотношении компонентов, мас.%: высокодисперсная сажа - 80, чугунная стружка - 10 и карбонат бария - 10. Обеспечивается требуемое диффузионное насыщение стальных изделий углеродом, достигается равномерность глубины слоя по площади изделия и снижаются энергетические затраты. 3 табл., 2 пр.
Изобретение относится к химико-термической обработке конструкционных и инструментальных сталей и может быть использовано для поверхностного упрочнения деталей машин и инструмента в машиностроительной, металлургической, химической, инструментальной и других отраслях промышленности. Способ нитроцементации деталей из штамповых сталей включает приготовление пасты путем смешивания железосинеродистого калия K4Fe(CN)6 и газовой сажи ДГ-100, нанесение пасты на изделие, нагрев с выдержкой, охлаждение в масле и низкий отпуск. При приготовлении пасты в нее дополнительно вводят бентонит и маршалит при следующем соотношении компонентов, мас.%: железосинеродистый калий K4Fe(CN)6 - 24-34, бентонит - 12, маршалит - 24, газовая сажа ДГ-100 - остальное, а в качестве пастообразователя используют поливинилацетатную эмульсию, приготовленную из клея ПВА (ГОСТ 18992-80) - 50%, метанола или этанола - 10% и воды - 40%. Нагрев проводят в нейтральной соляной ванне при следующем соотношении компонентов, мас.%: NaCl-50, Na2CO3-40, NaOH-10, при температуре 600-750°C с выдержкой при этой температуре в течение 0,5-3 часов. Затем образцы охлаждают в масле и проводят низкотемпературный отпуск при температуре 150-200°C. Обеспечивается повышение скорости нитроцементации и снижение трудоемкости процесса, расширение температурного интервала, повышение равномерности нагрева деталей и повышение экологической безопасности. 1 пр.
Изобретение относится к способу нитроцементации деталей из конструкционных или инструментальных сталей и может быть использовано для поверхностного упрочнения деталей машин и инструмента в машиностроительной, металлургической, химической и инструментальной промышленности. Осуществляют приготовление пасты путем смешивания железосинеродистого калия K4Fe(CN)6 и газовой сажи ДГ-100, нанесение пасты на изделие, нагрев с выдержкой, охлаждение в масле и низкий отпуск. При приготовлении пасты в нее дополнительно вводят карбонат бария, бентонит, маршалит и пастообразующую жидкость в виде поливинилацетатной эмульсии при следующем соотношении компонентов, мас.%: железосинеродистый калий K4Fe(CN)6 - 16-20, карбонат бария ВаСO3 - 14-18, бентонит - 12, маршалит - 24, газовая сажа ДГ-100 - остальное, пастообразующая жидкость, об. %: поливинилацетатная эмульсия - 50, этанол - 10, вода - 40. Затем проводят нагрев в нейтральной соляной ванне при следующем соотношении компонентов, мас.%: NaCl - 50, Na2CO3 - 50 при температуре 750-950°С с выдержкой при этой температуре в течение 1,0-6,0 часов, после чего образцы охлаждают в масле и проводят низкотемпературный отпуск при температуре 150-200°С. Обеспечивается повышение скорости нироцементации и снижение трудоемкости этого процесса, расширение температурного интервала, повышение равномерности нагрева стальных деталей и экологической безопасности. 1 пр.
Изобретение относится к химико-термической обработке конструкционных и инструментальных сталей и может быть использовано для поверхностного упрочнения деталей машин и инструмента в машиностроительной, металлургической, химической и инструментальной промышленности. Способ нитроцементации деталей включает приготовление пасты путем смешивания железосинеродистого калия K4Fe(CN)6, газовой сажи ДГ-100, карбамида, бентонита, маршалита, а также пастообразующей жидкости, при следующем соотношении компонентов, мас.%: железосинеродистый калий K4Fe(CN)6 - 16, карбамид (NH2)2CO - 18, бентонит - 12, маршалит - 24, газовая сажа ДГ-100 - остальное, пастообразующая жидкость (об.%): поливинилацетатная эмульсия 50%, этанол - 10%, вода - 40%, нанесение пасты на детали, нагрев в нейтральной соляной ванне при следующем соотношении компонентов, мас.%: NaCl - 35, Na2CO3 - 35, NaOH - 30, при температуре 550-650°C с выдержкой при этой температуре в течение 0,5-3 часов. Затем детали охлаждают в масле и проводят низкотемпературный отпуск при температуре 150-200°C. Обеспечивается повышение скорости нитроцементации и снижение трудоемкости процесса, расширение температурного интервала, повышение равномерности нагрева деталей и повышение экологической безопасности. 1пр.

Изобретение относится к нитроцементации деталей из конструкционных и инструментальных сталей. Осуществляют приготовление пасты путем смешивания компонентов, затем наносят пасту на изделие, проводят нагрев с выдержкой при температуре 450-850°С в течение 1-3 часов, охлаждают в масле и осуществляют низкий отпуск при температуре 150-180°С в течение 1-2 часов. При приготовлении пасты используют компоненты при следующем соотношении, мас. %: железосинеродистый калий K4Fe(CN)6 - 20-30, карбамид (NH2)2CO - 15-20, нитроцеллюлозный лак НЦ 222 - 15-30, газовая сажа ДГ-100 - остальное. При нитроцементации обеспечивается повышение скорости и расширение температурного интервала, а также повышается экологическая безопасность. 1 пр.
Наверх