Способ получения сигнала обратной связи в структурах систем управления электроприводов с поддержанием потокосцепления электродвигателя



Способ получения сигнала обратной связи в структурах систем управления электроприводов с поддержанием потокосцепления электродвигателя
Способ получения сигнала обратной связи в структурах систем управления электроприводов с поддержанием потокосцепления электродвигателя
H02P27/04 - Управление или регулирование электрических двигателей, генераторов, электромашинных преобразователей; управление трансформаторами, реакторами или дроссельными катушками (конструкции пусковых аппаратов, тормозов или других управляющих устройств см. в соответствующих подклассах, например механические тормоза F16D, механические регуляторы скорости G05D; переменные резисторы H01C; пусковые переключатели H01H; системы для регулирования электрических или магнитных переменных величин с использованием трансформаторов, реакторов или дроссельных катушек G05F; устройства, конструктивно связанные с электрическими двигателями, генераторами, электромашинными преобразователями, трансформаторами, реакторами или дроссельными катушками, см. в соответствующих подклассах, например H01F,H02K; соединение или управление

Владельцы патента RU 2314546:

Открытое акционерное общество "Рудоавтоматика" (RU)

Изобретение относится к области электротехники и может быть использовано в системах управления электроприводов постоянного и переменного тока. Технический результат изобретения - обеспечение простоты получения сигнала обратной связи и поддержание требуемой перегрузочной способности электродвигателя при нулевом задании. В способе получения сигнала обратной связи в структурах систем управления электроприводов с поддержанием потокосцепления электродвигателя в качестве сигнала обратной связи используется величина потокосцепления, возникающего в разрезе магнитопроводящей пластины, установленной на станине электродвигателя между полюсными делениями. Сигнал обратной связи действует и при нулевом задании, так как данный сигнал прямо зависит от потокосцепления в зазоре. Поэтому, настроив единожды систему управления электропривода при номинальном режиме работы, в дальнейшем полученный сигнал обратной связи позволит контролировать отклонения потокосцепления от номинального значения, что и является главной задачей систем управления электроприводов с поддержанием потокосцепления. 2 ил.

 

Предлагаемый способ получения сигнала обратной связи в структурах систем управления электроприводов с поддержанием потокосцепления электродвигателя предназначен для использования в системах управления электроприводов постоянного и переменного тока.

Известны структуры систем управления электроприводов переменного тока по косвенно определенному потокосцеплению, которые основаны на получении информации о потокосцеплении из сигналов с датчиков тока и напряжения, установленных в фазах электродвигателя переменного тока. (Греков Э.Л. Автореферат диссертационной работы на соискание ученой степени кандидата технических наук «Разработка и исследование электроприводов основных механизмов экскаваторов по системе НПЧ-АД на базе эквивалентных шестипульсных схем» - Самара, 2003, стр.16).

В отличие от предлагаемого способа известный способ обладает следующими недостатками: необходим предварительный расчет параметров электродвигателя, отсутствует наглядность настройки, не обеспечивается требуемая нагрузочная способность электропривода при нулевом задании.

Прототипом предлагаемого способа является способ получения сигнала обратной связи с помощью датчиков Холла, установленных в зазоре между статором и ротором электродвигателя. (Микитченко А.Я.Автореферат диссертации на соискание ученой степени доктора технических наук «Разработка и исследование частотно-управляемого асинхронного электропривода по системе НПЧ-АД для машин предприятий горнодобывающей промышленности» - Москва, 1999, стр.18)

В отличие от предлагаемого способа известный способ обладает следующими недостатками: трудоемкость установки датчиков Холла в зазор, сложность обслуживания.

Техническая задача, решаемая с помощью предлагаемого способа получения сигнала обратной связи в структурах систем управления электроприводов с поддержанием потокосцепления электродвигателя, состоит в обеспечении простоты получения сигнала обратной связи и в поддержании требуемой перегрузочной способности электродвигателя во всем диапазоне регулирования, в том числе и при нулевом задании.

Поставленная задача решается тем, что сигнал обратной связи снимается не с зазора, а со станины электродвигателя.

Также поставленная задача решается тем, что полученный сигнал обратной связи строго соответствует основному потокосцеплению электродвигателя, т.е. является реальным, а не косвенно определенным.

В структурах систем управления электроприводов с поддержанием потокосцепления электродвигателя требуется получение сигнала обратной связи, однозначно определяющего поведение реального потокосцепления электродвигателя во всем диапазоне регулирования, в том числе и при нулевом задании. При этом важно не абсолютное значение и строгое воспроизведение реального потокосцепления, а требуется адекватное реагирование сигнала обратной связи при отклонении реального потокосцепления электродвигателя от заданного структурой управления.

В предлагаемом способе получения сигнала обратной связи в структурах систем управления электроприводов с поддержанием потокосцепления электродвигателя используется информация о части потокосцепления, индуцированного в разрезе магнитопроводящей пластины, установленной на станине электродвигателя между полюсными делениями.

На фигуре 1 представлен разрез 4-полюсного электродвигателя постоянного тока.

Способ получения сигнала обратной связи состоит в следующем.

Индуцированное в электродвигателе потокосцепление 1 замыкается через полюс 2, зазор 3 и станину 4. При установке на поверхности станины 4 между полюсными делениями магнитопроводящей пластины 5 с разрезом 6 часть основного потокосцепления 7 будет передаваться через разрез 6. С помощью измерительных элементов, установленных в разрезе 6, получаем (например, с помощью датчиков Холла) информацию о потокосцеплении, передаваемом через разрез 6.

На фигуре 2 представлены зависимость 8 потокосцепления в зазоре якоря от тока обмотки возбуждения, зависимость 9 потокосцепления в разрезе на поверхности станины от тока обмотки возбуждения и номинальное значение 10 тока обмотки возбуждения.

По зависимости 9 видно, что в разрезе на поверхности станины отсутствует насыщение потокосцепления. Однако в структурах систем управления электроприводов с поддержанием потокосцепления электродвигателя настройка идет на строго определенное значение потокосцепления, а именно на номинальное значение 10 тока обмотки возбуждения. Важнейшим параметром обратной связи является отклонение потокосцепления от номинального значения 10, а по зависимости 9 четко прослеживается монотонность реального потокосцепления 8 в зазоре якоря, т.е. при отклонении потокосцепления в зазоре якоря - отклоняется и потокосцепление в разрезе на поверхности станины. При этом сигнал обратной связи действует и при нулевом задании, так как данный сигнал прямо зависит от потокосцепления в зазоре якоря. Поэтому, настроив единожды систему управления электропривода при номинальном режиме работы, в дальнейшем полученный сигнал обратной связи позволит контролировать отклонения потокосцепления от номинального значения, что и является главной задачей систем управления электроприводов с поддержанием потокосцепления.

Способ получения сигнала обратной связи в структурах систем управления электроприводов переменного тока поддержанием потокосцепления электродвигателя аналогичен рассмотренному варианту для постоянного тока, так же используется информация о части потокосцепления, индуцированного в разрезе магнитопроводящей пластины, установленной на станине электродвигателя между полюсными делениями. Отличием является необходимость в выделении действующего значения полученного сигнала.

Способ получения сигнала обратной связи в структурах систем управления электроприводов с поддержанием потокосцепления электродвигателя, отличающийся тем, что в качестве сигнала обратной связи используют величину потокосцепления, возникающего в разрезе магнитопроводящей пластины, установленной на станине электродвигателя между полюсными делениями.



 

Похожие патенты:

Изобретение относится к преобразовательной технике, а именно к преобразователям постоянного напряжения в переменное для питания синхронных гистерезисных электродвигателей, в частности гироскопических устройств.

Изобретение относится к области электротехники, а именно - к электрическим машинам. .

Изобретение относится к области электротехники, а именно - к электрическим машинам. .

Изобретение относится к электротехнике и может быть использовано в электроприводах, в которых требуется глубокое регулирование скорости, высокая перегрузочная способность, обеспечение тяжелого пуска из стопорного режима.

Изобретение относится к электротехнике и может быть использовано в электроприводах различного отраслевого применения, построенных на основе асинхронного короткозамкнутого двигателя.

Изобретение относится к электротехнике и может быть использовано в электроприводах переменного тока на основе асинхронного двигателя с фазным ротором, в основном для крановых механизмов подъема.

Изобретение относится к электротехнике и может быть использовано в электроприводах переменного тока на основе асинхронного двигателя с фазным ротором, в основном для крановых механизмов подъема.

Изобретение относится к электротехнике и может быть использовано в электроприводах переменного тока на базе асинхронного электродвигателя с фазным ротором и трехфазным импедансом (индукционным пусковым резистором) в роторной цепи, преимущественно для крановых механизмов подъема и передвижения, требующих получения пониженных (ползучих) скоростей.

Изобретение относится к области электротехники и может быть использовано для управления коллекторным электродвигателем устройств бытового и промышленного назначения.

Изобретение относится к области электротехники и может быть использовано для управления коллекторным электродвигателем устройств бытового и промышленного назначения.

Изобретение относится к измерительной технике и может быть использовано для определения частоты вращения и угла поворота якоря электродвигателя. .

Изобретение относится к электротехнике и может быть использовано в составе агрегатов терморегулирования и приводов изделий космической связи. .

Изобретение относится к электротехнике и может быть использовано, например, в системах регулируемого и нерегулируемого электроприводов. .

Изобретение относится к области электротехники, а точнее к вентильным электродвигателям с встроенными датчиками скорости и углового положения ротора. .

Изобретение относится к электротехнике и касается особенностей коммутируемых реактивных машин, применяемых в качестве двигателей постоянного тока, имеющих дополнительную функцию генератора.

Изобретение относится к электромашиностроению, в частности к тихоходным электрическим машинам. .

Изобретение относится к области диагностирования и отображения эксплуатационного отказа в автомобилях и содержит диагностическую схему для приема входных сигналов по электропроводке на обоих концах каждого предохранителя и электропроводке реле в блоке предохранителей или распределительной коробке, установленных в автомобиле, и диагностирования эксплуатационного отказа посредством выявления изменения логического значения входного сигнала и выходное средство для приема результата диагностирования от диагностической схемы и выдачи сигналов, отображающих местоположение дефектного предохранителя или реле.
Наверх