Система воздушного охлаждения масла газотурбинного двигателя наземного применения

Изобретение относится к области газотурбинных установок, преимущественно мобильных, в частности, для аэродромных газоструйных снегоочистителей. Цель изобретения - создание малогабаритной системы воздушного охлаждения масла, где источником охлаждающего воздушного потока является сам двигатель. Поставленная задача решена тем, что теплообменник устанавливается на входе в двигатель и весь воздушный поток, проходящий через двигатель, или часть его проходит через теплообменник. Поддержание требуемой температуры масла на входе в двигатель осуществляется посредством перепускного трубопровода с вмонтированным в него клапаном переменного сечения, который в зависимости от показания датчика температуры масла на входе в двигатель перераспределяет потоки масла, идущие через теплообменник и помимо его. 1 ил.

 

Для наземных газотурбинных двигателей, используемых на газоперекачивающих станциях, газотурбинных электростанциях, газоструйных установках и других силовых устройствах, для охлаждения масла применяют масловоздушный теплообменник, в котором необходима специальная система, создающая воздушный поток требуемой интенсивности.

В существующих аппаратах воздушного охлаждения масла (АВОМ), который является отдельным агрегатом, связанным с двигателем только трубопроводами подвода и отвода масла, источником воздушного потока является вентилятор, приводимый электродвигателем. Поддержание необходимой температуры масла на выходе из маслоохладителя (на входе в двигатель) осуществляется автоматически путем изменения частоты вращения вентилятора (Ю.Белоусов и др. Новые аппараты воздушного охлаждения масла для ГТУ, Газотурбинные технологии №4, 2000). Их недостатком являются большие габариты, вес, большое количество потребляемой электроэнергии, сложность обслуживания. По этим причинам они совершенно неприемлемы для мобильных установок на базе автомобилей, в частности для аэродромных газоструйных снегоочистителей.

Целью изобретения является создание малогабаритной системы воздушного охлаждения масла, являющейся узлом двигателя, в которой источником воздушного потока является сам двигатель.

Задача решается следующим образом.

В системе воздушного охлаждения масла газотурбинного двигателя наземного применения, включающей масловоздушный теплообменник, источник воздушного потока для теплообменника, трубопровод подвода масла от двигателя к теплообменнику, трубопровод отвода масла от теплообменника к двигателю, датчик измерения температуры масла на входе в двигатель, теплообменник установлен на входе в газотурбинный двигатель таким образом, что он продувается воздухом, проходящим через него, а между трубопроводами подвода и отвода масла установлен трубопровод с клапаном переменного сечения перепуска масла мимо теплообменника, управляемым по сигналу от датчика измерения температуры масла на входе в двигатель.

Масловоздушный теплообменник устанавливают перед входом в газотурбинный двигатель таким образом, что воздушный поток, проходящий через двигатель, прежде чем попасть в него, весь или частично проходит через теплообменник, выполняя функцию охладителя масла. Другими словами, функцию источника воздуха для масловоздушного теплообменника в предлагаемой схеме охлаждения выполняет сам двигатель. Отпадает необходимость в специальном воздушном вентиляторе и приводящем его электромоторе.

Поддержание необходимой температуры масла осуществляется следующим образом. Масляные трубопроводы подвода и отвода масла от двигателя к теплообменнику соединены между собой трубопроводом с вмонтированным в него клапаном перепуска масла. Через этот клапан переменного сечения часть масла перепускается мимо теплообменника, в зависимости от площади переменного сечения. При полностью закрытом клапане все масло проходит через теплообменник. Смешение потоков охлажденного в теплообменнике и неохлажденного, прошедшего мимо теплообменника, масла происходит на входе в двигатель, где находится штатный термодатчик измерения температуры смешавшегося масла. Управляя положением клапана перепуска в зависимости от показания термодатчика (вручную или автоматически), можно поддерживать температуру масла в требуемом диапазоне.

Пример реализации этого предложения показан на чертеже. На входной патрубок газотурбинного двигателя 1 устанавливается корпус 2 с вмонтированными в него двумя масловоздушными теплообменниками 3. Теплообменники установлены таким образом, что часть потока воздуха, проходящего через двигатель, проходит также и через теплообменники 3, охлаждая в них масло. Из двигателя масло по трубопроводу 4 поступает в теплообменники 3, а по трубопроводу 5 из теплообменников охлажденное масло возвращается в двигатель. Трубопроводы 4 и 5 соединены трубопроводом 6, в который вмонтирован клапан перепуска масла 7 переменного сечения. Пропускная способность клапана зависит от показаний датчика температуры масла 8 на входе в двигатель.

Работа системы охлаждения происходит следующим образом. На запуске газотурбинного двигателя и в течение некоторого времени работы на режиме прогрева клапан перепуска полностью открыт и практически все масло из двигателя по трубопроводам 4, 6 и 5 проходит мимо теплообменников 3. По достижении заданного допустимого значения температуры масла на входе в двигатель по показаниям датчика 8 (вручную или автоматически) клапан перепуска 7 начинает прикрываться, и часть масла проходит через теплообменники 3. При увеличении количества тепла, подводимого к маслу в двигателе, клапан 7 по сигналу датчика 8 продолжает прикрываться, увеличивая долю масла, проходящего через теплообменники. При полностью закрытом клапане перепуска все масло проходит через теплообменники.

Осуществление данного предложения, в частности, решает проблему охлаждения масла при создании мобильных газоструйных установок на автомобильном шасси, предназначенных для очистки от снега, льда и пыли взлетнопосадочных полос, дорог, автодромов струей выходящего из сопла газа. Очень громоздкие и тяжелые АВОМы здесь неприменимы. Маслотопливные теплообменники чаще всего неэффективны из-за недостаточного расхода топлива. Предлагаемая конструкция не имеет указанных недостатков и легко реализуется, несущественно влияя на габариты установки.

Система воздушного охлаждения масла газотурбинного двигателя наземного применения, включающая источник воздушного потока, масловоздушный теплообменник, трубопровод подвода масла к теплообменнику, трубопровод отвода масла от теплообменника, датчик измерения температуры масла на входе в двигатель, отличающаяся тем, что теплообменник установлен на входе в газотурбинный двигатель таким образом, что источником воздушного потока для теплообменника является компрессор двигателя, а трубопроводы подвода и отвода масла соединены между собой трубопроводом перепуска с вмонтированным в него клапаном переменного сечения, управляемым по сигналу от датчика измерения температуры масла на входе в двигатель.



 

Похожие патенты:

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, а именно к размещению опор для вращающихся с большой частотой вращения роторов турбомашин, а также для смазки и охлаждения подшипников и самих опор, и может использоваться в наиболее напряженных опорах.

Изобретение относится к системам смазки механических устройств, например двигателей, в частности к устройствам для сигнализации о наличии металлических частиц в системе смазки газотурбинных двигателей (ГТД), и позволяет диагностировать начало разрушения двигателя при появлении стружки в масле.

Изобретение относится к маслосборной пробке для возвращения масла, использованного для смазки подшипников газотурбинного двигателя. .

Изобретение относится к газотурбинным двигателям (ГТД) авиационного и наземного применения, а именно к конструкции межвальной опоры, и может использоваться в наиболее напряженных межвальных опорах ГТД.

Изобретение относится к газотурбинным реактивным двигателям и может быть использовано в качестве двигательной установки воздушно-космических систем (ВКС). .

Изобретение относится к газотурбинным двигателям авиационного и наземного применения и позволяет повысить надежность и экономичность двигателя за счет уменьшения потерь в тракте.

Изобретение относится к области двигателестроения и может быть использовано преимущественно в малоразмерных газотурбинных двигателях (ГТД). .

Изобретение относится к энергетическому и транспортному машиностроению, в частности к системам смазки подшипниковых опор газотурбинных двигателей, и может быть использовано для подачи масла в подшипники, например межроторные подшипники высокотемпературных авиационных газотурбинных двигателей.

Изобретение относится к области авиадвигателестроения и, в частности, к конструкции элементов маслобака турбореактивного двухконтурного двигателя (ТРДД), а именно к устройствам для суфлирования маслобака турбореактивного двухконтурного двигателя, устанавливаемого на сверхзвуковые самолеты.

Изобретение относится к области авиадвигателестроения и, в частности, к центробежному суфлеру системы суфлирования авиационного газотурбинного двигателя. .

Изобретение относится к системам смазки механических устройств, например двигателей, в частности к устройствам для сигнализации о наличии металлических частиц в системе смазки газотурбинных двигателей, и позволяет диагностировать начало разрушения двигателя при появлении стружки в масле

Изобретение относится к авиадвигателестроению и может быть использовано в авиационных турбореактивных двигателях (ТРД), турбореактивных двигателях с форсажной камерой сгорания (ТРДФ), двухконтурных турбореактивных двигателях (ТРДЦ) и двухконтурных турбореактивных двигателях с форсажной камерой сгорания (ТРДДФ)

Изобретение относится к газотурбинным двигателям, в том числе наземного применения для механического привода и привода для электрогенератора

Изобретение относится к области авиадвигателестроения, в частности к маслосистеме авиационного газотурбинного двигателя для учебно-тренировочных самолетов, и позволяет снять ограничения по режиму «масляное голодание» самых напряженных элементов конструкции авиационного двигателя - опорных подшипников ротора, лимитирующих его живучесть в экстремальных условиях эксплуатации

Изобретение относится к двухконтурным газотурбинным двигателям

Изобретение относится к газотурбинным двигателям, в частности к опорам двухроторных газотурбинных двигателей, и может быть использовано в авиадвигателестроении и других областях техники, где используют газотурбинные двигатели

Изобретение относится к области газотурбинного двигателестроения, а именно к способам наддува опор газотурбинных двигателей

Изобретение относится к узлам приводов авиационных газотурбинных двигателей, газотурбинных установок наземного применения

Изобретение относится к газотурбостроению, а именно к устройствам для смазки подшипников газотурбинного двигателя и может применяться в наиболее напряженных опорах роторов турбомашин
Наверх