Способ получения фотолюминесцирующего пористого кремния

Использование: в оптоэлектронике для получения пористого кремния при изготовлении различных структур, обладающих способностью к фотолюминесценции и электролюминесценции, например в качестве индикаторов. Сущность изобретения: исходный монокристаллический кремний подвергают электролитическому травлению в двухэлектродной ячейке с использованием электролита, содержащего воду, этанол и плавиковую кислоту. Травление выполняют в два этапа. На первом этапе травление исходного кремния выполняют при постоянном токе при приложении к кремниевой пластине положительного потенциала. На втором этапе травления изменяют полярность напряжения, прикладываемого к ячейке травления, без изменения его величины. При этом к кремниевой пластине прикладывают отрицательный потенциал и травят материал в течение 10-60 мин. Предложенный способ обеспечивает повышение интенсивности фотолюминесценции при уменьшении длины волны фотолюминесценции. 1 табл.

 

Изобретение относится к области оптоэлектроники, а конкретно к способам получения пористого кремния для различных структур, обладающих способностью к фотолюминесценции (ФЛ) и электролюминесценции (ЭЛ), которые могут быть использованы, например, в качестве индикаторов.

Пористый кремний с достаточно высокой степенью пористости (>50%) обладает способностью к ФЛ и ЭЛ в видимой области спектра. Это позволяет рассматривать этот материал в качестве основы различного рода светоизлучающих приборов, которые при сравнительной дешевизне изготовления обеспечивают возможность получения светоизлучающих поверхностей большой площади (от 0,5-1 см2 и более, конечный размер принципиально не ограничен). Такого рода приборы могут работать как при использовании эффекта ФЛ с подсветкой активирующим излучением, так и при использовании эффекта ЭЛ посредством пропускания тока через пористый кремний. Одной из проблем, возникающих при использовании пористого кремния, является получение ФЛ с короткой длиной волны для расширения диапазона цветов излучения.

Известен способ получения пористого кремния [A.Bsiesy, J.С.Vial, F.Gaspard u.a. Photoluminescence of high porosity and of electrochemically oxidized porous silicon layers. - Surface Science, 254 (1991), p.196], обладающего ФЛ в видимой области спектра, при котором использовали электрохимическое травление монокристаллического кремния р-типа проводимости (с удельным сопротивлением 10 Ом.см) в электролите на основе HF. При этом получали пористый кремний, который обладал ФЛ с максимумом при 760 нм. Образованный пористый кремний затем частично растворяли в 15% HF без приложения напряжения в течение промежутка времени до 30 мин. Всю обработку выполняли в темноте.

При этом длина волны максимума ФЛ была уменьшена до 600 нм при снижении интенсивности ФЛ до 0,14 от интенсивности ФЛ материала после электрохимического травления до последующего химического растворения.

Недостатком этого способа является необходимость выполнения травления в темноте и невозможность получения ФЛ с максимумом при <600 нм. При увеличении времени растворения >30 мин происходит полное растворение пористого кремния и ФЛ не проявляется.

Наиболее близким техническим решением к заявляемому способу является способ [A.Bsiesy, J.C.Vial, F.Gaspard u.a. Photoluminescence of high porosity and of electrochemically oxidized porous silicon layers. - Surface Science, 254 (1991), p.197], который включает в себя электрохимическое травление монокристаллического кремния р-типа проводимости (с удельным сопротивлением 10 Ом.см) при использовании электролита на основе HF при плотности тока 10 мА/см2. Образованный пористый кремний частично растворяли в 15% HF без приложения напряжения. Всю обработку выполняли при освещении ячейки для травления.

Максимум ФЛ при увеличении времени растворения смещается до 560 нм при значительном снижении интенсивности ФЛ до 0,05 от интенсивности ФЛ материала после электрохимического травления до последующего химического растворения. Такой способ с освещением ячейки травления обеспечивает получение ФЛ с более короткой длиной волны по сравнению с аналогом. Недостатком прототипа является значительное уменьшение интенсивности ФЛ в коротковолновой части спектра (примерно 0,05 от исходной интенсивности ФЛ пористого кремния) и ограничение наименьшей длины волны ФЛ величиной 560 нм. Материал с более короткой длиной волны ФЛ не удается получить вследствие растворения пористого кремния при увеличении времени обработки.

Техническим результатом предлагаемого изобретения является повышение интенсивности ФЛ при уменьшении длины волны ФЛ.

Данный технический результат достигается тем, что исходный монокристаллический кремний подвергают электрохимическому травлению с использованием электролита, содержащего воду, этанол и плавиковую кислоту. Травление выполняют в двухэлектродной ячейке в два этапа. На первом этапе травление исходного кремния выполняют при постоянном токе при приложении к исходному кремнию положительного потенциала.

На втором этапе травления изменяют полярность прикладываемого напряжения без изменения его величины. При этом к кремнию прикладывают отрицательный потенциал в течение 10-60 мин. При времени травления <10 мин мало смещение положения максимума ФЛ в коротковолновую область, а при времени травления >60 мин возрастает степень растворения пористого кремния и ФЛ уменьшается.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1.

В качестве исходного материала использовали монокристаллический кремний марки КДБ-10 (удельное электросопротивление 10 Ом.см). В качестве электролита использовали водно-спиртовый раствор плавиковой кислоты. Травление выполняли в два этапа. На первом этапе травления к исходному кремнию прикладывали положительный потенциал (12В), при этом плотность тока составляла 10 мА/см2. На втором этапе после изменения полярности приложенного напряжения без изменения его величины выполняли травление в течение 10 мин.

Максимум ФЛ полученного пористого кремния находился при 650 нм. Интенсивность ФЛ составляла 0,92 от ее величины после первого этапа травления.

Пример 2.

Использовали те же исходный кремний, электролит и параметры травления на первом этапе, что и в примере 1. Травление на втором этапе выполняли в течение 15 мин.

Максимум ФЛ полученного пористого кремния находился при 595 нм. Интенсивность ФЛ составляла 0,8 от ее величины после первого этапа травления.

Пример 3.

Использовали те же исходный кремний, электролит и параметры травления на первом этапе, что и в примере 1. Травление на втором этапе выполняли в течение 30 мин.

Максимум ФЛ полученного пористого кремния находился при 560 нм. Интенсивность ФЛ составляла 0,56 от ее величины после первого этапа травления.

Пример 4.

Использовали те же исходный кремний, электролит и параметры травления на первом этапе, что и в примере 1. Травление на втором этапе выполняли в течение 60 мин.

Максимум ФЛ полученного пористого кремния находился при 525 нм. Интенсивность ФЛ составляла 0,33 от ее величины после первого этапа травления.

Таблица

Параметры фотолюминесценции пористого кремния, полученного предлагаемым способом
Длина волны фотолюминесценции пористого кремния/относительная интенсивность максимума фотолюминесценции
После первого этапа травленияПосле второго этапа травления
Время второго этапа травления, мин
10153060
760 нм/1650 нм/0,92595 нм/0,8560 нм/0,56525 нм/0,33

Представленные примеры показывают, что при травлении исходного монокристаллического кремния в два этапа с изменением на втором этапе полярности напряжения, прикладываемого к ячейке травления, получают пористый кремний, который по сравнению с прототипом способен к ФЛ в более коротковолновой части видимой области спектра (вплоть до 525 нм). При этом интенсивность ФЛ при 525 мкм снижается примерно в 3 раза. Изменением времени травления на втором этапе можно регулировать длину волны максимума ФЛ от 650 нм до 525 нм и, соответственно, цвет свечения пористого кремния.

Способ получения фотолюминесцирующего пористого кремния, включающий электрохимическое травление исходного монокристаллического кремния при освещении и при приложении постоянного напряжения, отличающийся тем, что травление проводят в два этапа, на первом этапе к исходному кремнию прикладывают положительный потенциал, а на втором этапе к кремнию прикладывают отрицательный потенциал той же величины в течение 10-60 мин.



 

Похожие патенты:

Изобретение относится к технологии изготовления полупроводниковых материалов и приборов методом газофазной эпитаксии из металлоорганических соединений, а именно к изготовлению гетероструктур на основе элементов III группы и приборов на их основе, таких как белые светодиоды, лазеры и т.д.

Изобретение относится к технологии производства тонких оксидных монокристаллических пленок и может быть использовано в оптике. .

Изобретение относится к области светотехники, а именно приборов, предназначенных для излучения света в видимом диапазоне, и может быть использовано как в приборах индикации, так и освещения.

Изобретение относится к области полупроводниковых светоизлучающих приборов, в частности к светодиодам на основе твердых растворов нитридов металлов третьей группы.

Изобретение относится к электронной технике. .

Изобретение относится к оптоэлектронной технике, а именно к эффективным, мощным и компактным полупроводниковым инжекционным излучателям, в том числе светодиодам. .

Изобретение относится к способу изготовления оптических приборов, в частности полупроводниковых оптоэлектронных приборов, таких как лазерные диоды, оптические модуляторы, оптические усилители, оптические коммутаторы и оптические детекторы.

Изобретение относится к области полупроводниковых приборов, конкретно к диодным источникам и приемникам, излучающим и принимающим излучение с поверхности в инфракрасном (ИК) диапазоне спектра, и может найти применение в приборах газового анализа, спектрометрах, в системах обнаружения и связи.

Изобретение относится к области оптического приборостроения, а именно к классу осветительных и сигнальных систем, и может быть использовано на различных видах транспорта, например на автомобильном, железнодорожном и морском транспорте, а также для внутреннего освещения различных помещений, наружной подсветки, для построения рекламных светящихся экранов, светофоров и других источников информации типа бегущей строки, табло и т.д

Изобретение относится к светоизлучающей электронной технике, а именно к модульным конструкциям высокомощных полупроводниковых источников света, которые могут использоваться в качестве единичного источника света, а также в качестве сборочной единицы осветительной системы, содержащей ряд источников света

Изобретение относится к технологии получения монокристалла нитрида на кремниевой пластине и светоизлучающего устройства на его основе

Изобретение относится к светотехнике, а именно к полупроводниковым источникам света, преимущественно к источникам белого света

Изобретение относится к светотехнике и может быть использовано в качестве источника света для внутреннего и внешнего светотехнического оборудования летательных аппаратов, снабженных техникой ночного видения

Изобретение относится к оптическим устройствам, изготовленным с помощью способа индуцированного примесью перемешивания квантовой ямы (КЯ)

Изобретение относится к светодиодной технике, а точнее к источникам света, предназначенным для локального освещения и, в частности, для замены лампочек накаливания с диаметром цоколя не более 10 мм в аппаратуре гражданского и иного назначения
Наверх