Авиационный ракетный комплекс

Изобретение относится к области авиационно-космической техники и может быть использовано в авиационных ракетных комплексах космического назначения, преимущественно с тяжелыми баллистическими ракетами (массой более 100 тонн), оснащенными, например, жидкостными ракетными двигателями и запускаемыми в воздухе с целью выведения космических аппаратов на орбиты. Авиационный ракетный комплекс содержит самолеты, планер, внутри фюзеляжа которого размещена ракета-носитель воздушного запуска, устройство сопряжения ракеты-носителя с самолетами, выполняющими функции буксировщиков, системы, обеспечивающие их функционирование, и наземную транспортно-разгонную платформу, оснащенную двигателями для ее разгона. Фюзеляж планера выполнен с возможностью его разделения по горизонтальной плоскости. Транспортно-разгонная платформа представляет собой самолет, имеющий остаточные ресурс и срок службы, доработанный под размещение и наземное транспортирование на нем планера с ракетой-носителем, а также под условия эксплуатации его в составе авиационного ракетного комплекса. Данное техническое решение авиационного ракетного комплекса позволяет достичь увеличения габаритов и стартового веса ракеты-носителя и, как следствие этого, увеличить выводимые на орбиты массы космических аппаратов. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к области авиационной ракетно-космической техники. Оно может быть использовано в авиационных ракетных комплексах (АРК) космического назначения, например, с тяжелыми баллистическими ракетами (массой 100 т и более), оснащенными, например, жидкостными ракетными двигателями (ЖРД) и запускаемыми в воздухе с целью выведения космических аппаратов (КА), например, ИСЗ на орбиты.

Известен аналог АРК с тяжелой баллистической ракетой-носителем (РН), размещаемой на верхней наружной поверхности планера, буксируемого несколькими самолетами, представленный в описании патента РФ №2130879 (1999 год). Указанный аналог, как наиболее близкий по технической сути, принят за прототип.

Недостатками прототипа являются, в том числе:

- необходимость применения для буксирования планера, оснащенного ракетой-носителем (РН), самолетов с повышенными мощностями двигательных установок;

- малая эффективность использования технических возможностей самолета, например, по дальности доставки РН в точку ее пуска;

- сложность конструкции планера, размещения на нем РН и других систем АРК, а также способа пуска РН;

- большие риски при реализации программы создания АРК.

Задачами, на решение которых направлена настоящая заявка на изобретение, являются, в том числе:

- повышение эффективности использования технических возможностей самолета и АРК в целом;

- повышение безопасности и надежности пуска ракеты;

- снижение технических и финансовых рисков при создании АРК КН и при его эксплуатации, а также сроков разработки.

Это достигается, в том числе за счет:

- использования самолетов, как буксировщиков планера, внутри фюзеляжа которого размещается ракета-носитель (РН);

- использования наземной транспортно-разгонной платформы (ТРП), на которой размещается планер, снаряженный РН;

- использования более простого по конструкции устройства сопряжения планера с самолетами-буксировщиками;

- исполнения наземной ТРП на базе отработанного самолета, принятого к летной эксплуатации, например самолета Ил-76МТ (МД, МФ), имеющего остаточные ресурс с срок службы, доработанного под размещение и наземное транспортирование на нем планера с РН, а также под обеспечение эксплуатации его в составе АРК (При этом этот базовый самолет дорабатывается под размещение на нем планера, оснащенного РН, в минимальном объеме и с максимальным использованием всех его штатных агрегатов, узлов и систем (шасси, двигатели, фюзеляж, систем управления, электропитания, связи и т.д.)).

Сущность изобретения поясняется фиг.1-3, на которых показан общий вид размещения планера с РН на наземной ТРП, сопряжения планера с ТРП и самолетами, выполняющими функции буксировщиков планера.

Планер 1 с РН 2 размещен на ТРП 3. Планер 1 соединен с помощью троса-фала 4 с самолетом 5, который с помощью троса-фала 6 соединен с самолетом 7. Тросы-фалы 4, 6, самолет 5 образуют устройство сопряжения планера 1 с самолетом-буксировщиком 7. Для обеспечения функционирования ТРП 3, планера 1 и их систем ТРП 3 и планер 1 снабжены системами управления (на чертеже не показаны). Эта система: планер 1, оснащенный РН 2, самолеты 5, 7 ТРП 3 и буксировочные тросы-фалы 4, 6 функционируют следующим образом.

Перед запуском космического аппарата ТРП 3 подается на техническую позицию авиационного ракетного комплекса, где на нее производится погрузка планера 1, снаряженного РН 2, например, не заправленной компонентами топлива. Погрузка РН 2 обеспечивается возможностью разъема фюзеляжа планера 1 по горизонтальной плоскости Б на две части: нижняя часть 8, верхняя часть 9. После погрузки планера 2 на ТРП 3 производятся заправка РН 2 топливом и проверка систем РН 2, а также систем ТРП 3. После завершения всех работ по подготовке авиационного ракетного комплекса к запуску космического аппарата (в том числе планера 1, самолетов 5, 7 РН 2, ТРП 3) снаряженная ТРП 3 буксируется на взлетно-посадочную полосу (ВПП) 10, с которой осуществляются разбег, взлет самолетов 5, 7 и движение ТРП 3.

На ВПП 10 производятся сопряжения самолета 5 с планером 1 с помощью буксировочного троса-фала 4 и самолетов 5, 7 последовательно (друг за другом) с помощью троса-фала 6. В результате чего самолеты 5, 7 и ТРП 3 приведены в стартовое положение на ВПП 8.

Функционирование комплекса производится в следующей последовательности.

По команде от системы управления АРК на вылет в район пуска РН 2 одновременно на самолетах 5, 7 и ТРП 3 запускаются двигатели (для разгона ТРП на ней установлены, например, двигатели 11 от вышеупомянутого базового самолета Ил-76МТ (МД, МФ)). Тяги двигателей самолетов 5, 7 и ТРП 3 обеспечивают равные ускорения при движении их по ВПП 10. По достижении заданных уровней тяг двигателей самолетов-буксировщиков 5, 7 и ТРП 3 подается команда на взлет (начало движения их по ВПП 10). При этом обеспечиваются уровни тяг двигателей самолетов 5, 7 ТРП 3, исключающие провисания тросов-фалов 4, 6 до недопустимых уровней.

При движении самолетов 5, 7 и ТРП 3 по ВПП 10 на самолеты 5, 7 и планер 1 действуют подъемные силы, которые обеспечивают отрыв самолетов 5, 7 от ВПП 10 и планера 1 от ТРП 3 при достижении заданной скорости движения (˜280-300 км/час).

После отрыва самолетов 5, 7 от ВПП 10 одновременно от ТРП 3 производится по команде от системы управления АРК (планера 1 или ТРП 3) отделение снаряженного РН 2 планера 1 и начало полета самолетов 5, 7 в район пуска РН 2 с целью выведения КА.

По прибытии самолета 5 в район пуска РН 2 самолеты 5, 7 и планер 1 занимают заданные расчетные положения и их в пространстве по высотам, направлению и скорости полета, угловым параметрам (крен, тангаж, курс), обеспечивающим запуск РН 2.

По команде от системы управления АРК на пуск РН 2 производится отделение нижней части 8 фюзеляжа планера 1, например, по горизонтальной плоскости Б (например, с помощью задействования пирозамков и детонирующих удлиненных зарядов, смонтированных на верхней 9 и нижней 8 частях фюзеляжа планера 1 для разрушения их силовых связей между собой, на чертеже не показаны) и после ее отделения подается команда от системы управления АРК на отделение РН 2 от верхней части 9 фюзеляжа планера 1 и запуск ее двигателей I ступени. РН 2 отделяется от верхней части 9 фюзеляжа планера 1 под действием силы тяжести (т.е. падает), а планер 1 (верхняя часть 9) вследствие наличия у него подъемной силы, создаваемой крылом 12, поднимается вверх. После отделения РН 2 от верхней части 9 планера 1 и запуска ее двигателя I ступени производится ее полет по заданной программе и выведение космического аппарата на заданную орбиту.

Таким образом, представленный выше технический облик АРК с новыми отличительными признаками в сравнении с прототипом позволяет в том числе:

- при меньших финансовых затратах и сроках, необходимых для создания АРК КН, увеличить его эффективность;

- повысить безопасность и надежность эксплуатации АРК;

- упростить технологию изготовления и отработки систем АРК при их создании;

- уменьшить технические, экономические и другие риски при создании АРК и его эксплуатации.

Предложенное в изобретении техническое решение открывает перспективное направление разработки АРК.

1. Авиационный ракетный комплекс, включающий самолеты, планер, ракету-носитель воздушного запуска, устройство сопряжения планера с самолетами, выполняющими функции буксировщиков планера, системы, обеспечивающие их функционирование, отличающийся тем, что содержит наземную транспортно-разгонную платформу, оснащенную двигателями, на которой смонтирован планер, внутри фюзеляжа которого размещена ракета-носитель, при этом нижняя часть фюзеляжа планера выполнена с возможностью отделения ее от верхней части фюзеляжа вниз, последовательно сопряженные первый и второй самолеты с помощью первого троса-фала, а второй самолет с помощью второго троса-фала сопряжен с верхней частью фюзеляжа планера, при этом оба троса-фала и второй самолет образуют устройство сопряжения планера с самолетом-буксировщиком, а транспортно-разгонная платформа представляет собой самолет, имеющий остаточные ресурс и срок службы, доработанный под размещение и наземное транспортирование на нем планера с ракетой-носителем, а также под условия эксплуатации его в составе авиационного ракетного комплекса.

2. Авиационный ракетный комплекс по п.1, отличающийся тем, что транспортно-разгонная платформа выполнена на базе разработанного самолета, приспособленного для эксплуатации его в составе авиационного ракетного комплекса.

3. Авиационный ракетный комплекс по п.1, отличающийся тем, что наземная транспортно-разгонная платформа снабжена системой управления.

4. Авиационный ракетный комплекс по п.1, отличающийся тем, что планер снабжен системой управления.



 

Похожие патенты:

Изобретение относится к области авиационной ракетно-космической техники. .

Изобретение относится к области авиационно-космической техники и может быть использовано в авиационных ракетных комплексах космического назначения, преимущественно с тяжелыми баллистическими ракетами (массой более 100 тонн), оснащенными, например, жидкостными ракетными двигателями и запускаемыми в воздухе с целью выведения космических аппаратов на орбиты.

Изобретение относится к области авиационно-космической техники и может быть использовано в авиационных ракетных комплексах космического назначения, преимущественно с тяжелыми баллистическими ракетами (массой более 100 тонн), оснащенными, например, жидкостными ракетными двигателями и запускаемыми в воздухе с целью выведения космических аппаратов на орбиты.

Изобретение относится к области авиационно-космической техники и может быть использовано в авиационных ракетных комплексах космического назначения, преимущественно с тяжелыми баллистическими ракетами (массой более 100 тонн), оснащенными, например, жидкостными ракетными двигателями и запускаемыми в воздухе с целью выведения космических аппаратов на орбиты.

Изобретение относится к области авиационно-космической техники и может быть использовано в авиационных ракетных комплексах космического назначения, преимущественно с тяжелыми баллистическими ракетами (массой более 100 тонн), оснащенными, например, жидкостными ракетными двигателями и запускаемыми в воздухе с целью выведения космических аппаратов на орбиты.

Изобретение относится к области ракетной техники, в частности к старту ракет с воздушных носителей. .

Снаряд // 2309376
Изобретение относится к вооружению, в частности к снарядам и ракетам. .

Изобретение относится к области оборудования самолетов. .

Изобретение относится к области вооружений и может найти применение в ракетных комплексах ближнего радиуса действия. .

Изобретение относится к области вооружения, в частности к области малогабаритных противотанковых управляемых снарядов, преимущественно с дозвуковыми и трансзвуковыми скоростями полета, и может быть использовано в конструкциях с различными аэродинамическими схемами.

Изобретение относится к средствам терморегулирования космических аппаратов и может использоваться при их наземном обслуживании. .

Изобретение относится к области космической техники и может быть использовано для систем терморегулирования спутников. .

Изобретение относится к области авиационной ракетно-космической техники. .

Изобретение относится к области авиационно-космической техники и может быть использовано в авиационных ракетных комплексах космического назначения, преимущественно с тяжелыми баллистическими ракетами (массой более 100 тонн), оснащенными, например, жидкостными ракетными двигателями и запускаемыми в воздухе с целью выведения космических аппаратов на орбиты.

Изобретение относится к области авиационно-космической техники и может быть использовано в авиационных ракетных комплексах космического назначения, преимущественно с тяжелыми баллистическими ракетами (массой более 100 тонн), оснащенными, например, жидкостными ракетными двигателями и запускаемыми в воздухе с целью выведения космических аппаратов на орбиты.

Изобретение относится к области авиационно-космической техники и может быть использовано в авиационных ракетных комплексах космического назначения, преимущественно с тяжелыми баллистическими ракетами (массой более 100 тонн), оснащенными, например, жидкостными ракетными двигателями и запускаемыми в воздухе с целью выведения космических аппаратов на орбиты.

Изобретение относится к средствам заправки двигательных установок космических аппаратов газами большой плотности. .

Изобретение относится к системам защиты космического аппарата от орбитальных осколков. .

Изобретение относится к воздушно-космической технике и, в частности, к двигательным установкам летательных аппаратов (ЛА) для полетов в атмосфере и космосе. .

Изобретение относится к воздушно-космической технике и, в частности, к двигательным установкам летательных аппаратов (ЛА) для полетов в атмосфере и космосе. .

Изобретение относится к области авиационной ракетно-космической техники. .
Наверх