Способ получения 4,4-диметокси-2,3,5-трихлорциклопент-2-ен-1-она

Изобретение относится к способу получения 4,4-диметокси-2,3,5-трихлорциклопент-2-ен-1-она из гексахлорциклопентадиена. Способ заключается в проведении в одном реакторе двух последовательных стадий - взаимодействия гексахлорциклопентадиена с гидроокисью калия в метаноле при соотношении, равном 1:(8-10), при температуре 20-22°С в течение 24 ч и кислотного гидролиза 50%-ной водной серной кислотой образующегося промежуточного продукта без его выделения. Целевое соединение выделяют путем вакуумной перегонки с выходом 75-80% и чистотой 96-98%. Технический результат - исключение дорогостоящих и малодоступных реагентов, упрощение процесса и повышение выхода целевого соединения.

 

Изобретение относится к органической химии, конкретно к способу получения 4,4-диметокси-2,3,5-трихлорциклопент-2-ен-1-она формулы (I),

который может найти применение в качестве полупродукта в синтезе природных хлорсодержащих циклопентенонов, в частности высокоактивного антибиотика и фунгицида криптоспориопсина [1, 2], а также хлорвулонов и пунагландинов, эффективных простаноидов антивирусного и антиракового действия, выделенных из морских кораллов [3-5].

Известны способы получения соединения (I), исходящие из гексахлорциклопентадиена (ГХЦПД) [6-10].

Двухстадийный путь получения циклопентенона (I), предложенный авторами [6, 7], включает фотореакцию ГХЦПД в растворе этилацетата (EtOAc). При конверсии 70-80% ГХЦПД выход ацетоксипроизводного (II), выделенного хроматографическим путем из сложной смеси продуктов, составляет лишь 5-15% [6]. Вторая стадия этого процесса представляет перемешивание 0.001 М производного (II) с 5-кратным избытком гидроксида калия (КОН) в метаноле (МеОН) (3 ч, 20°С). Последующая обработка реакционной смеси (упаривание, экстракция диэтиловым эфиром, концентрирование раствора) и хроматографическая очистка на силикагеле (SiO2) приводят к целевому соединению (I) с выходом 92% [7] и общим выходом 4-13% в расчете на исходный ГХЦПД.

Основным недостатком этой схемы является крайне низкие селективность и выход на фотохимической стадии процесса. Кроме этого, к недостаткам следует отнести и необходимость использования специальной аппаратуры и усложняющее технологию процесса хроматографическое выделение как целевого (I), так промежуточного (II) соединения.

Второй известный путь - 3-стадийного получения (I) [8] основан на взаимодействии диметоксипроизводного (III) [9] с натриевым производным борнеола. Вначале, согласно методу [8] взаимодействием ГХЦПД с КОН (1:2.6) в МеОН при 30-40°С (12 ч) получают 5,5-диметокси-1,2,3,4-тетрахлорциклопентадиен (III) (ДМТХЦПД) с выходом 62% после вакуумной перегонки. Далее, согласно схеме синтеза [8] к алкоголяту натрия, полученному при действии на раствор изоборнеола гидрида натрия (NaH) в диметилсульфоксиде (ДМСО), прибавляют раствор ДМТХЦПД в ДМСО, перемешивают 5 ч, разлагают водой и экстрагируют этилацетатом. После промывки органического экстракта насыщенным раствором хлористого натрия (NaCl), осушки сульфатом магния (MgSO4), упаривания и хроматографической очистки на SiO2 с выходом 60% был получен виниловый эфир (IV). Последний медленно при комнатной температуре распадается (стадия фрагментации, 30 суток) с образованием целевого соединения (I) с выходом 80% и камфена, отделение которого от целевого (I) также проводят хроматографическим путем. Выход соединения (I) в расчете на диметоксипроизводное (III) составляет 48%, на ГХЦПД ˜30%.

Недостатки данной трехстадийной схемы включают использование дорогостоящих ДМСО и NaH (и связанное с использованием этого металлорганического реагента применение инертных газов - азота или аргона), малодоступного борнеола, необходимость двойной хроматографической очистки на колонке с SiO2 (как промежуточного винилового эфира (IV), так и целевого соединения (I)). Кроме того, важным недостатком данного подхода является большая продолжительность во времени (˜30 суток) стадии фрагментации эфира (IV) и невысокий общий выход (˜30% из ГХЦПД).

Ближайшим прототипом предлагаемого изобретения выбран метод получения целевого соединения (I) из (ДМТХЦПД) (III) действием Na-производных третичных спиртов [10]. Приготовленный отдельно растворением металлического натрия (Na) в соответствующем спирте (трет-бутиловом спирте, 2-метил-2-деканоле, 1-винилциклогексан-1-оле) Na-алкоголят смешивают с раствором диметоксипроизводного (III) в ДМСО (соотношение ДМТХЦПД:RONa=1:0.8), полученного взаимодействием ГХЦПД с КОН в МеОН (аналогично описанному выше, [8]), и массу перемешивают при комнатной температуре в течение 24 ч. После обработки реакционной массы, включающей нейтрализацию 10%-ной соляной кислотой и экстракцию хлороформом (CHCl3) (3×300 мл), целевое соединение (I) выделяют из смеси с соответствующим олефином вакуумной перегонкой (для третбутилата натрия) или хроматографированием на SiO2 (для высококипящих спиртов) с выходами 70-80%. Суммарный выход (I) из ГХЦПД составляет 40-50%.

R1=R2=СН3, R2=C8H17 (а); R1=R2=R3=СН3 (б); R1=R2=циклогексил, R3=винил (в)

Недостатками известного двухстадийного способа-прототипа являются, во-первых, необходимость отдельного получения диметоксипроизводного (III) и натриевых производных третичных спиртов; во-вторых, использование дорогостоящих растворителя ДМСО, металлического Na и третичных спиртов и, в-третьих, получение целевого ссоединения (I) сопровождается образованием одновременно с целевым (I) соответствующих олефинов - продуктов дегидратации используемых спиртов, и выделение целевого соединения (I) требует проведения сложных технологических приемов, в частности, необходимость хроматографической очистки на финальной стадии (кроме варианта использования трет-бутанола).

Задача, на решение которой направлено заявляемое изобретение, заключается в упрощении процесса и повышении выхода целевого соединения (I).

По предлагаемому двухстадийному «одногоршковому» способу, смесь ГХЦПД и КОН в МеОН, взятых в молярном соотношении 1:(8-10), перемешивают при 20-22°С в течение 24 ч и промежуточное соединение (V) без выделения гидролизуют путем добавления 50%-ного водного раствора серной кислоты (Н2SO4) до рН 1 и перемешивания при 20-22°С в течение 10 ч. Затем МеОН упаривают на роторном испарителе, продукт экстрагируют EtOAc (3×100 мл). Объединенные органические экстракты промывают водой, насыщенным раствором NaCl, сушат MgSO4 и после перегонки в вакууме выделяют целевое соединение с выходами 75-80% в расчете на ГХЦПД и чистотой 96-98% (по данным газожидкостной хроматографии).

Преимущества предлагаемого метода, по сравнению с прототипом, состоят, во-первых, в исключении при осуществлении процесса малодоступных и дорогостоящих реагентов, а также металлорганических реагентов (Na, NaH), что позволяет исключить необходимость применения инертных газов, во-вторых, в возможности осуществления двух последовательных стадий в одном реакторе (колбе) («одногоршковость»), в-третьих, в технологической простоте очистки продукта (однократная вакуумная перегонка), в-четвертых, в более высоком выходе целевого продукта (75-80%).

Сущность изобретения подтверждается следующим примером.

Пример. Смесь 27.3 г (0.1 м) ГХЦПД, 56.0 г (1.0 м) КОН в 140 мл МеОН перемешивают при 20-22°С 24 ч. Затем реакционную массу охлаждают до 0°С и по каплям при перемешивании прибавляют 50%-ный водный раствор Н2SO4 до рН 1. Полученную массу перемешивают при 20-22°С в течение 10 ч, выделившуюся соль (KCl) отфильтровывают, МеОН упаривают на роторном испарителе и продукт экстрагируют EtOAc (3×100 мл). Объединенные органические экстракты промывают водой, насыщенным раствором NaCl. После осушки органического экстракта MgSO4 растворитель упаривают на роторном испарителе и остаток перегоняют в вакууме. Получают 18.4 г (75%) кристаллизующегося при стоянии маслообразного соединения (I), т.кип. 100-103°С при 0.2 мм рт.ст.

4,4-Диметокси-2,3,5 трихлорциклопент-2-ен-1-он (I). Бесцветные кристаллы с т.пл. 52-54°С (Rf=0.75, петролейный эфир - этилацетат, 1:1). ИК-спектр, ν, см-1: 1596, 1620, 1636, 1696, 1752. Спектр ЯМР 1Н, δ, м.д.: 3.30 с (3Н, ОСН3), 3.50 с (3Н, ОСН3), 4.64 с (1Н, С5H). Спектр ЯМР 13С, δ, м.д.: 52.03 (ОСН3), 52.07 (ОСН3), 62.19 (С5), 100.49 (С4), 133.77 (С2), 157.65 (С3), 186.17 (С1). Масс-спектр, m/z (Iотн, %): 249 (7.5), 247 (22.3), 245 (27.3) [М]+ 218 (31.4), 216 (93.6), 214 (100) [М-ОСН3]+, 212 (19.8), 210 (30.9) [М-Cl]+ 190 (4.9), 188 (14.0), 186 (15.5) [М-СН3О-СО]+ 136 (6.1), 134 (13.8), 112 (2.5), 110 (9.7), 108 (13.3), 97 (31.9), 89 (7.4), 87 (22.8), 69 (11.9), 59 (17.7) [ОСОСН3]+, 55 (11.1), 41 (8.0), 38 (5.5), 36 (14.8) [HCl]+ 28 (23.9). Найдено, %: С 34.10; Н, 2.82; Cl 43.40. С7Н7Cl3О3. Вычислено, %: С 34.25; Н 2.87; Cl 43.60.

Литература

1. W.J. MeGahren, J.H. van der Honde, L.A. Mitscher. J. Am. Chem. Soc. 1969, 91, 157.

2. S. Kabanyane, A. Decken, Chao-Mei Yu, J.M. Struns. Can. J. Chem. 2000, 78, 270.

3. K. Iguchi, S. Kaneta, K. Mori, Y, Yamada, A. Honde, Y. Mori. Tetrahedron Lett. 1985, 26, 5787.

4. M. Suzuki, Y. Morita, A. Yanagisawa, B. Bacer, P.J. Scheuer, R. Noyori. J. Org. Chem. 1988, 53, 286.

5. M. Fukushima. Anti-Cancer Drugs. 1994, 5, 131.

6. Н.С. Зефиров, М.А. Кирпиченок, Т.Г. Шестакова. Ж. Орг. химии. 1983, 19, 535.

7. Н.С. Зефиров, М.А. Кирпиченок, Т.Г. Шестакова. ДАН СССР. 1982, 262, 890.

8. О.М. Кузнецов, С.А. Торосян, Н.С. Востриков, М.С. Мифтахов. Изв. АН, Сер. Хим. 1997, 2799.

9. E.T. McBee, D.L. Crain, B.D. Crain, L.R. Belohlav, H.P. Braendlin. J.Am.Chem.Spc. 1962, 84, 3557.

10. Г.А. Толстиков, С.А. Исмаилов, Я.Л. Вельдер, М.С. Мифтахов. Ж. Орг. химии. 1990, 26, 672.

Способ получения 4,4-диметокси-2,3,5-трихлорциклопент-2-ен-1-она формулы I

путем взаимодействия гексахлорциклопентадиена с гидроокисью калия в метаноле, отличающийся тем, что процесс проводят при мольном соотношении гексахлорциклопентадиен : гидроокись калия, равном 1:(8-10), при температуре 20-22°С в течение 24 ч с последующим кислотным гидролизом образующегося промежуточного продукта без его выделения и выделением целевого продукта вакуумной перегонкой.



 

Похожие патенты:

Изобретение относится к усовершенствованному способу получения соединения формулы (I) где R означает C1-C6-алкил, и R 1 и R2 независимо означают водород или С 1-С4-алкил, причем соединение формулы (II) где R означает С1-С6-алкил, и Х - галоген или группа ОСОСН3, подвергают взаимодействию с соединением формулы (III) где R1 и R2 независимо означают водород или С1-С4-алкил, в присутствии соли С1-С4-карбоновой кислоты и в среде полярного растворителя.

Изобретение относится к способу ацилирования ароматического соединения формулы I в которой А означает остаток бензольного цикла; радикал или радикалы R идентичные или различные и означают одну из следующих групп: алкил, линейный или разветвленный, имеющий 1-6 атомов углерода, предпочтительно 1-4 атома углерода, такой как метил, этил, пропил, изопропил, бутил, изобутил, втор.бутил, трет.бутил, алкокси, линейный или разветвленный, имеющий 1-6 атомов углерода, предпочтительно 1-4 атома углерода, такой, как метокси, этокси, пропокси, изопропокси, бутокси, радикал формулы -R1-X, в котором R1 означает валентную связь; Х означает атом галогена, предпочтительно атом хлора, брома или фтора, n число меньше или равное 4, предпочтительно 0 или 1, путем реакции указанного соединения с ацилирующим агентом формулы II в которой X' означает атом хлора и R3 означает алкил, линейный или разветвленный, имеющий от 1 до 12 атомов углерода, предпочтительно 1-4 атома углерода, в присутствии цеолитового катализатора, отличается тем, что осуществляют смешение любым образом ароматического соединения и ацилирующего агента, пропускают полученную смесь через трубчатый реактор, содержащий неподвижный слой катализатора, и рециркулируют реакционную смесь, вышедшую из каталитического слоя, через каталитический слой столько раз, сколько это необходимо для получения желаемой степени конверсии ароматического соединения.

Изобретение относится к новым трициклическим производным, формулы (I), (Ia'), (Ib'), (Ig'), (If'), их солям и гидратам, которые обладают иммуносупрессорным или антиаллергическим действием, фармацевтическим композициям на основе этих соединений, а также к способу подавления иммунной реакции или лечения, и/или предупреждения аллергических заболеваний.

Изобретение относится к новым производным халконов общей формулы (А) где Ar - фенил, который может быть незамещенным либо замещенным одним, двумя либо тремя заместителями, независимо выбираемыми из числа Cl, Br, F, -OMe, NO2, CF3, C1-4 низшего алкила, -NMe2, -NEt2, -SCH3, -NHCOCH3; 2-тиенил, 2-фурил; 3-пиридил; 4-пиридил либо 3-индолил; R - -OCH2R1, где R1 выбирают из числа -СН= СМе2, -СМе=СН2, -CCH; при условии, что в случае, когда Ar представляет собой фенил, С4-алкилфенил, 4-метоксифенил или 3,4-диметоксифенил, R может быть любым за исключением 3-метил-2-бутенилоксигруппы.

Изобретение относится к способу получения 5,5'-(оксиди)пентанона-2, который может быть использован в качестве полифункционального растворителя, экстрагента, как душистое вещество и как исходное сырье для синтеза гетероциклов.

Изобретение относится к улучшенному способу получения цис-1-{2-[4-(6-метокси-2-фенил-1,2,3,4-тетрагидронафталин-1-ил] этил} пирролидина, который является промежуточным веществом для получения (-)цис-6-фенил-5-[4-(2-пирролидин-1-ил-этокси)фенил-5,6,7,8-тетрагидронафталин-2-ола, который используется в лечении остеопороза, а также к промежуточным соединениям для этого способа.

Изобретение относится к новому способу получения галоидзамещенных соединений гидроксидифенила, которые применяются для борьбы с микроорганизмами. .

Изобретение относится к основному органическому, тонкому органическому и нефтехимическому синтезу и касается катализатора синтеза альдегидов С7+ из олефинов С6+ , окиси углерода и водорода методом гидроформилирования, способа получения указанного катализатора и способа получения альдегидов С7+ с использованием указанного катализатора.

Изобретение относится к способу получения 1-гидроксиадамантан-4-она (кемантана), который может применяться в качестве иммуностимулирующего средства, эффективного при лечении заболеваний сосудистой системы, конечностей аутоиммунного генеза, хронического бронхита, туберкулеза, инфекционно-аллергической бронхиальной астмы, хронического афтозного стоматита, герпеса, а также в качестве антикаталептического средства и полупродукта для синтеза 1,4-бифункциональных замещенных адамантана.
Изобретение относится к очистке 2-ацил-производных индандиона-1,3-антикоагулянтов крови непрямого действия, применяемых в практике медицинской дезинфекции для уничтожения мышевидных грызунов.

Изобретение относится к непрерывному способу очистки акролеина, при котором водный раствор акролеина, свободный от трудно конденсируемого газа, подают в дистилляционную колонну, снабженную по меньшей мере одним испарителем в ее основании и по меньшей мере одним конденсатором в верхней ее части.

Изобретение относится к непрерывному способу очистки акролеина, при котором водный раствор акролеина, свободный от трудно конденсируемого газа, подают в дистилляционную колонну, снабженную по меньшей мере одним испарителем в ее основании и по меньшей мере одним конденсатором в верхней ее части.

Изобретение относится к способу получения соединения формулы I ,в которой каждый из R1, R 2, R3 и R4 независимо друг от друга обозначает водородный атом или С 1-С4алкил, каждый из А и Е независимо друг от друга обозначает С1-С 2алкилен, который может быть замещен один раз или до четырех раз С1-С4алкильной группой, и М+ обозначает ион щелочного металла, ион щелочно-земельного металла или аммониевый ион.
Изобретение относится к усовершенствованному способу получения акролеина, или акриловой кислоты, или их смеси, при котором А) на первой стадии А пропан подвергают парциальному гетерогенному катализированному дегидрированию в газовой фазе с образованием газовой смеси А продукта, содержащей молекулярный водород, пропилен, не превращенный пропан и отличные от пропана и пропена компоненты, из содержащихся в газовой смеси А - продукта стадии А отличных от пропана и пропилена компонентов выделяют, по меньшей мере, частичное количество молекулярного водорода и смесь, полученную после указанного выделения, применяют в качестве газовой смеси А' на второй стадии В для загрузки, по меньшей мере, одного реактора окисления и в, по меньшей мере, одном реакторе окисления пропилен подвергают селективному гетерогенному катализированному газофазному парциальному окислению молекулярным кислородом с получением в качестве целевого продукта газовой смеси В, содержащей акролеин, или акриловую кислоту, или их смеси, и С) от получаемой в рамках парциального окисления пропилена на стадии В газовой смеси В на третьей стадии С отделяют акролеин, или акриловую кислоту, или их смеси в качестве целевого продукта и, по меньшей мере, содержащийся в газовой смеси стадии В не превращенный пропан возвращают на стадию дегидрирования А, в котором в рамках парциального окисления пропилена на стадии В применяют молекулярный азот в качестве дополнительного газа-разбавителя.
Изобретение относится к усовершенствованному способу получения акролеина, или акриловой кислоты, или их смеси, при котором А) на первой стадии А пропан подвергают парциальному гетерогенному катализированному дегидрированию в газовой фазе с образованием газовой смеси А продукта, содержащей молекулярный водород, пропилен, не превращенный пропан и отличные от пропана и пропена компоненты, из содержащихся в газовой смеси А - продукта стадии А отличных от пропана и пропилена компонентов выделяют, по меньшей мере, частичное количество молекулярного водорода и смесь, полученную после указанного выделения, применяют в качестве газовой смеси А' на второй стадии В для загрузки, по меньшей мере, одного реактора окисления и в, по меньшей мере, одном реакторе окисления пропилен подвергают селективному гетерогенному катализированному газофазному парциальному окислению молекулярным кислородом с получением в качестве целевого продукта газовой смеси В, содержащей акролеин, или акриловую кислоту, или их смеси, и С) от получаемой в рамках парциального окисления пропилена на стадии В газовой смеси В на третьей стадии С отделяют акролеин, или акриловую кислоту, или их смеси в качестве целевого продукта и, по меньшей мере, содержащийся в газовой смеси стадии В не превращенный пропан возвращают на стадию дегидрирования А, в котором в рамках парциального окисления пропилена на стадии В применяют молекулярный азот в качестве дополнительного газа-разбавителя.
Изобретение относится к способу выделения н-масляного альдегида из альдегидного отгона продукта гидроформилирования пропилена, содержащего помимо н-масляного альдегида, изомасляный альдегид, а также примеси воды, бутиловых спиртов, метанола, бутилформиатов, кислот, углеводородов, предельных и непредельных бутиловых эфиров, пропилкетонов, бутилбутиратов, альдегидов C8 , ацеталей С12, неидентифицированных кислородсодержащих компонентов.

Изобретение относится к каталитическому окислению органических веществ в паровой фазе в реакционных трубах многотрубного реактора теплообменного типа с неподвижным слоем катализатора и к способу получения (мет)акролеина или (мет)акриловой кислоты в данных реакторах.

Изобретение относится к новым 2-(2,6-дихлорфенил)диарилимидазолам общей формулы (I), обладающих ингибирующим действием в отношении активности протеинпирозинкиназы, прежде всего киназы c-met, и могут найти применение при лечении онкологических заболеваний
Наверх