Опорный полимерный изолятор

Изобретение относится к области электроэнергетики и может быть использовано в качестве опорных полимерных изоляторов для аппаратов высокого напряжения. Изолятор состоит из стеклопластикового стержня (1), защитной оболочки (2) из трекингостойкого материала и оконцевателей (4) из полимерного композиционного материала. Стержень (1) крепится в оконцевателях (4) посредством клеевой массы, в состав которой вводится графит или ровинг. Оконцеватели (4) и клеевая масса могут быть выполнены токопроводящими. На внутренней полости оконцевателей (4) делаются продольные углубления, а на фланцевой части - вертикальные конусообразные выступы. На наружной поверхности фланцевой части оконцевателей (4) выполняются выборки материала и ребра жесткости. Техническим результатом является существенное уменьшение материалоемкости и веса изолятора, а также снижение затраты на его изготовление. 5 з.п. ф-лы, 3 ил.

 

Изобретение относится к электроэнергетике, а более конкретно к высоковольтной технике, именно высоковольтным опорным полимерным изоляторам, используемым в распределительных устройствах подстанций, воздушных линиях электропередачи и других объектах электроэнергетического строительства.

Известен опорный полимерный изолятор, содержащий корпус из изоляционного материала, выполненный в виде тела вращения, и установленную по его торцам металлическую арматуру в виде залитых в изоляционный корпус деталей [1].

Существенными недостатками такого изолятора являются высокая материалоемкость, а также низкая стойкость используемых для изготовления корпуса термопластов к комплексному воздействию электрического поля и внешних факторов окружающей среды, а именно ультрафиолетового излучения, дождевых осадков и различных загрязнений, что ведет к быстрому разрушению материала корпуса, вызывает его эрозию и развитие науглероженных дорожек (треков) на поверхности, приводящих к снижению электрической прочности изолятора; кроме того, из-за недостаточной надежности узла армирования при воздействии вибрационных и ударных нагрузок большая вероятность, что изолятор будет выходить из строя вследствие расшатывания закладных деталей.

Известна также опорно-изоляционная конструкция, содержащая диэлектрический ребристый корпус, например, из силикона-эластомера с металлическими наконечниками, размещенными на концах корпуса, внутри которого равномерно по периферии размещены по меньшей мере три профильных элемента из высокопрочного однонаправленного стеклопластика, торцы которых закреплены в металлических наконечниках [2].

Известная опорно-изоляционная конструкция предназначена для использования в аппаратах высокого напряжения (110 кВ и выше), в результате чего ее конструктивное исполнение чрезвычайно усложняется и удорожается. Потому такие дорогостоящие изоляторы применять на электроэнергетических объектах более низкого напряжения нецелесообразно.

Наиболее близким техническим решением по отношению к предлагаемому является опорный полимерный изолятор, содержащий покрытый защитной оболочкой из трекингостойкого материала стеклопластиковый стержень и установленные на его концевых участках оконцеватели [3].

В конструкции данного опорного полимерного изолятора элементы, обеспечивающие соединение изолятора с аппаратами высокого напряжения, а именно оконцеватели (наконечники), выполняются металлическими, что делает конструкцию не чисто изоляционной, вызывая определенные трудности технологического процесса изготовления изоляторов такого типа. Наличие в изоляционной конструкции металлических деталей приводит к увеличению затрат при производстве изоляторов, удорожает конечную продукцию изготовления. Высокая стоимость такого изолятора обуславливается исключительно высокой стоимостью металлических оконцевателей из-за большой их материалоемкости, особенно при использовании способа обработки металлов резанием; при этом требуются значительные затраты на их установку в стеклопластиковый стержень, вызванные необходимостью применения специального оборудования (прессов) и оснастки, а также затраты, связанные с обязательным нанесением на металлические поверхности защитных покрытий, например, проводить цинкование или хромирование.

Заявитель и авторы изобретения ставили перед собой задачу создания опорного полимерного изолятора нового типа без каких-либо неизоляционных элементов в конструкции, например, металлических частей, с тем, чтобы существенно упростить процесс изготовления изолятора, не теряя при этом его высоких механических свойств, в частности, обеспечивая надежность работы изолятора при изгибе, кручении, а также других действующих в ходе эксплуатации нагрузок. Применение предложенного изобретения позволяет получить положительный технический результат, заключающийся в существенном упрощении технологического процесса изготовления изолятора, снижении продажной цены конечного продукта при сохранении требуемой по техническим нормам степени эксплуатационной надежности в сложных условиях окружающей среды. Указанный результат достигается за счет новой совокупности существенных конструктивных признаков, зафиксированной в нижеследующей формуле изобретения: «опорный полимерный изолятор, содержащий покрытый защитной оболочкой из трекингостойкого материала стеклопластиковый стержень и установленные на его концевых участках оконцеватели; указанные оконцеватели выполнены из полимерного композиционного материала, изготовленного на основе высокопрочных стеклонаполненных термопластов, на внутренней поверхности полости каждого оконцевателя по поперечному сечению выполнены продольные углубления, а внутри фланцевой части - вертикальные конусообразные выступы, соответственно, исключающие возможность свободного перемещения стержня внутри оконцевателей при воздействии крутящих и растягивающих усилий и обеспечивающие гарантированный зазор для размещения клеевой массы с введенным в ее состав графитом или ровингом, посредством которой концевые участки стеклопластикового стерженя соединены с оконцевателями; полимерный композиционный материал оконцевателей выполнен на основе полиамида; материал, из которого выполнены оконцеватели, и клеевая масса являются токопроводящими; стеклопластиковый стержень выполнен полым в форме трубы; внутренняя полость каждого оконцевателя выполнена конусообразной; во фланцевой части оконцевателей выполнен ряд выборок материала и ряд ребер жесткости».

Сущность изобретения поясняется чертежами, где на фиг.1 представлен разрез полимерного опорного изолятора, выполненного согласно настоящему изобретению; на фиг.2 - общий вид в разрезе оконцевателя изолятора, показанного на фиг.1; на фиг.3 - схематический вид узла соединения стеклопластикового стержня с оконцевателем изолятора, представленного на фиг.1.

Предлагаемый опорный полимерный изолятор состоит из стержня 1, выполненного из диэлектрического материала, например стеклопластика. Как вариант, стержень 1 может быть выполнен полым в форме трубы. На наружной поверхности стрежня 1 закрепляется защитная ребристая оболочка 2 из трекингостойкого материала, например кремнийорганической композиции. К обоим концевым участкам 3 стержня 1 подсоединяются оконцеватели 4, которые выполняются из полимерного композиционного материала, изготовленного на основе высокопрочных стеклонаполненных термопластов. В качестве композиционного материала может быть выбран полиамид или какой-либо другой изоляционный материал с подходящими для этих целей характеристиками. На внутренней поверхности полости 5 оконцевателей 4 по поперечному сечению выполнены продольные углубления 6, а внутри фланцевой части 7 - вертикальные конусообразные выступы 8, обеспечивающие гарантированный зазор и исключающие возможность свободного перемещения стержня внутри оконцевателей 4 при воздействии крутящих и растягивающих усилий. Стеклопластиковый стержень 1 соединен с оконцевателями 4 с помощью клеевой массы 9, в состав которой входит графит или ровинг. Клеевая масса 9 и сам материал оконцевателей 4 могут быть выполнены токопроводящими. Конструкция оконцевателей 4 предусматривает выполнение на наружной поверхности 10 фланцевой части 7 выборок 11 материала и ребер жесткости 12; внутренняя полость 5 оконцевателей 4 может быть не цилиндрической, а конусообразной с тем, чтобы обеспечить более надежное (клиновое) соединение стеклопластикового стержня 1 с оконцевателями 4.

Изготовление (сборка) заявляемого опорного полимерного изолятора производится в следующей технологической последовательности.

Внутренние полости 5 двух (верхнего и нижнего) оконцевателей 4, изготовленных по специальным пресс-формам методом термического прессования, покрываются слоем клеевой массы 9; затем готовый стеклопластиковый стержень 1 с определенным усилием обоими концами вводится во внутренние полости 5 оконцевателей 4, при этом выдавленные излишки клеевой массы 9 удаляются. Полученная таким образом подготовленная деталь, называемая изоляционной тягой, выдерживает предусмотренное технологическими картами время при комнатной температуре до окончательного затвердевания клеевой массы 9. После соответствующей временной выдержки изоляционная тяга на расчетную по электрическим характеристикам длину покрывается диэлектрической защитной ребристой оболочкой 2, например, способом горячей вулканизации под давлением с использованием кремнийорганической смеси в качестве связующего материала. После этого партия из серии готовых изоляторов проходит механические и электрические испытания и изоляторы отправляются заказчику.

Предложенный опорный полимерный изолятор отличается низкими стоимостными и трудоемкостными показателями при одновременном сохранении всех его электрических и механических характеристик, прежде всего за счет того, что металлические оконцеватели, составляющие основную весовую и трудоемкостную составляющую изолятора, удалось заменить на изоляционные оконцеватели, более легкие по весу и менее трудоемкие по изготовлению и использованию оборудования для их изготовления.

Заявленный изолятор прошел всесторонние испытания с положительными результатами. Заявителем в настоящее время налажен серийный выпуск опорных полимерных изоляторов, изготавливаемых по настоящему изобретению.

Источники информации

1. Патент ФРГ № 1904389 «Опорный полимерный изолятор», кл. 21 С 14/02, 1970 г.

2. Описание изобретения к патенту Российской Федерации № 2107349 «Опорно-изоляционная конструкция», кл. Н01В 17/14, заявлено 18.07.96 г., опубликовано 20.03.98 г. Бюллетень № 8.

3. Описание изобретения к патенту Российской Федерации № 2074425 «Полимерный изолятор», кл. Н01В 17/02, заявлено 20.07.94 г., опубликовано 27.02.97 г. Бюллетень № 6.

1. Опорный полимерный изолятор, содержащий покрытый защитной оболочкой из трекингостойкого материала стеклопластиковый стержень и установленные на его концевых участках оконцеватели, отличающийся тем, что указанные оконцеватели, выполнены из полимерного композиционного материала, изготовленного на основе высокопрочных стеклонаполненных термопластов, на внутренней поверхности полости каждого оконцевателя по поперечному сечению выполнены продольные углубления, а внутри фланцевой части - вертикальные конусообразные выступы, соответственно исключающие возможность свободного перемещения стержня внутри оконцевателей при воздействии крутящих и растягивающих усилий и обеспечивающие гарантированный зазор для размещения клеевой массы с введенным в ее состав графитом или ровингом, посредством которой концевые участки стеклопластикового стерженя соединены с оконцевателями.

2. Изолятор по п.1, отличающийся тем, что полимерный композиционный материал оконцевателей выполнен на основе полиамида.

3. Изолятор по п.1, отличающийся тем, что материал, из которого выполнены оконцеватели, и клеевая масса являются токопроводящими.

4. Изолятор по п.1, отличающийся тем, что стеклопластиковый стержень выполнен полым в форме трубы.

5. Изолятор по п.1, отличающийся тем, что внутренняя полость каждого оконцевателя выполнена конусообразной.

6. Изолятор по п.1, отличающийся тем, что во фланцевой части оконцевателей выполнен ряд выборок материала и ряд ребер жесткости.



 

Похожие патенты:

Изобретение относится к электротехнике и касается опорных и линейных изоляторов для высоковольтных подстанций и линий электропередачи. .

Изобретение относится к электротехнике и касается опорных изоляторов для высоковольтных подстанций и линий электропередачи. .

Изобретение относится к электротехнике и касается опорных изоляторов для высоковольтных подстанций и линий электропередачи. .

Изобретение относится к электротехнике, в частности к высоковольтным изоляторам. .

Изобретение относится к электротехнике и касается опорных изоляционных конструкций для высоковольтных подстанций. .

Изобретение относится к изоляционным конструкциям высокого напряжения, а именно к стержневым опорным изоляторам, используемым на открытых распределительных устройствах высоковольтных подстанций в качестве опор для токоведущих проводов или шин.

Изобретение относится к области электротехнике, в частности к высоковольтным изоляторам. .

Изобретение относится к устройству и способу изготовления электрических стеклопластиковых изоляторов для воздушных линий электропередач. .

Изобретение относится к высоковольтной технике может быть использовано для повышения надежности электрических систем. .

Изобретение относится к электротехнике, в частности, к опорным изоляционным конструкциям аппаратов высокого напряжения. .

Изобретение относится к области электротехнического оборудования, а конкретно к изолятору (варианты), предназначенному для крепления проводов и оптоволоконных кабелей на траверсах линий электропередач

Изобретение относится к электротехнике и касается опорных изоляторов для высоковольтных подстанций и линий электропередачи

Изобретение относится к электротехнике, а именно к способам изготовления электрических изоляторов из высокопрочных композиционных материалов, например стеклопластика, которые могут использоваться в воздушных линиях электропередач, на подстанциях, контактных сетях электротранспорта

Изобретение относится к области электроэнергетики, а именно к опорным полимерным изоляторам для электроподстанций и воздушных линий электропередачи

Изобретение относится к изолирующим устройствам, обеспечивающим электроизоляцию приборов от высокого электрического напряжения

Изобретение относится к области электротехнического оборудования, в частности к изоляционным конструкциям высоковольтных линий электропередач и открытых распределительных устройств, а именно к изоляторам для крепления высоковольтных проводников

Раскрыт изолятор, предназначенный для крепления, в качестве одиночного изолятора или в составе колонки или гирлянды изоляторов, высоковольтного провода в электроустановке или на линии электропередачи. Изолятор содержит изоляционное тело и арматуру в виде установленных на его концах первого и второго элементов арматуры. Первый элемент арматуры выполнен с возможностью соединения, непосредственно или посредством крепежного устройства, с высоковольтным проводом или со вторым элементом арматуры предшествующего высоковольтного изолятора указанных колонки или гирлянды. Второй элемент арматуры выполнен с возможностью соединения с электроустановкой, или опорой линии электропередачи, или с первым элементом арматуры последующего высоковольтного изолятора указанных колонки или гирлянды. Кроме того, изолятор содержит четыре или более электрода, выходящие в три или более разрядные камеры, размещенные в изоляционном теле. Разрядные камеры представляют собой корпуса, открытые в пространство вокруг изоляционного тела, и снабжены выступами, установленными внутри корпусов с возможностью ограничения величины разрядного зазора между электродами. Крайние электроды электрически соединены с арматурой или выходят на поверхность изоляционного тела. Технический результат - снижение разброса величин разрядных зазоров между электродами при изготовлении изолятора, что обеспечивает надежную защиту электроустановок и линий от молниевых разрядов, а также повышает срок службы изолятора. 3 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к электротехническому оборудованию, а именно к опорным изоляторам. В изоляторе на болт крепежного узла насажена втулка, выполненная из диэлектрического материала, без внутренней и внешней резьбы, причем болт с насаженной на ней втулкой помещен в отверстие на заземленной несущей конструкции, диаметр которого увеличен на удвоенную толщину стенки втулки, между головкой болта крепежного узла и головкой втулки из диэлектрического материала помещены металлическая шайба крепежного узла и дополнительная металлическая шайба, между которыми зажат металлический проволочный проводник, конец которого несколькими витками присоединен к болту крепежного узла, другой конец проволочного проводника, пройдя через индикатор неисправности, закреплен болтовым соединением на заземленной несущей конструкции, а между корпусом изолятора и заземленной несущей конструкцией установлены, соответственно, токопроводящая и диэлектрическая прокладки с соосными отверстиями диаметром, равным диаметру болта крепежного узла, площадь токопроводящей прокладки больше площади основания корпуса изолятора, но меньше площади диэлектрической прокладки, при этом индикатор неисправности выполнен в виде проволочного проводника, поверхность которого покрыта термокраской, или из стальной проволоки, на которой закручен узел, в петлю узла вставлен диэлектрический флажок, причем сечение стальной проволоки определяется величиной однофазного тока, при прохождении которого стальная проволока плавится. Изобретение обеспечивает сокращение времени обнаружения неисправности и непрерывную диагностику изолятора. 2 з.п. ф-лы, 4 ил.

Изолятор-разрядник содержит изоляционное тело и арматуру в виде установленных на его концах первого и второго элементов арматуры. Первый элемент арматуры выполнен с возможностью соединения, непосредственно или посредством крепежного устройства, с высоковольтным проводом или со вторым элементом арматуры предшествующего высоковольтного изолятора колонки или гирлянды. Второй элемент арматуры выполнен с возможностью соединения с электроустановкой или опорой линии электропередачи или с первым элементом арматуры последующего высоковольтного изолятора колонки или гирлянды. Кроме того, изолятор-разрядник содержит три или более разрядные камеры, установленные в изоляционном теле и последовательно соединенные в цепочку. Разрядные камеры состоят из корпусов и установленных в корпусах электродов, которые жестко закреплены в корпусах и установлены с образованием разрядных зазоров внутри корпусов. Электроды выходят на внешние поверхности корпусов. Электроды и выводы электродов из корпусов жестко закреплены в корпусах, а электроды соседних разрядных камер соединены посредством электрических проводников. Корпусы имеют выходы в пространство вокруг изоляционного тела, а электроды крайних разрядных камер из цепочки последовательно соединенных трех или более разрядных камер электрически соединены с арматурой или с электрическими проводниками, выходящими на поверхность изоляционного тела. Технический результат - снижение разброса величины разрядных зазоров между электродами разрядных камер при изготовлении изолятора. 3 н. и 3 з.п. ф-лы, 3 ил.

Изолятор-разрядник содержит изоляционное тело и арматуру в виде установленных на его концах первого и второго элементов арматуры. Первый элемент арматуры выполнен с возможностью соединения, непосредственно или посредством крепежного устройства, с высоковольтным проводом или со вторым элементом арматуры предшествующего высоковольтного изолятора указанных колонки или гирлянды. Второй элемент арматуры выполнен с возможностью соединения с электроустановкой, или опорой линии электропередачи, или с первым элементом арматуры последующего высоковольтного изолятора указанных колонки или гирлянды. Кроме того, изолятор-разрядник содержит три или более разрядные камеры, последовательно соединенные в цепочку и установленные в изоляционном теле. Разрядные камеры состоят из корпусов и установленных в корпусах электродов с выводами, выходящими из корпусов. Электроды установлены с образованием разрядных зазоров внутри корпусов. Электроды и выводы электродов из корпусов жестко закреплены в корпусах. Выводы соседних разрядных камер соединены, причем корпуса имеют выходы в пространство вокруг изоляционного тела, а выводы крайних разрядных камер из цепочки последовательно соединенных трех или более разрядных камер имеют электрическое соединение с арматурой или выходят на поверхность изоляционного тела. Технический результат - снижение разброса величин разрядных зазоров мультиэлектродной системы при изготовлении изоляционного тела с использованием полимеров. 3 н. и 4 з.п. ф-лы, 3 ил.
Наверх