Способ управления положением солнечных батарей космического аппарата и система для его осуществления

Изобретения относятся к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Предлагаемый способ включает разворот панелей СБ в рабочее положение, соответствующее совмещению нормали к освещенной поверхности СБ с плоскостью, образуемой осью вращения панелей СБ и направлением на Солнце. При этом определяют моменты начала солнечной активности и достижения частицами высоких энергий поверхности КА. Измеряют плотности потоков указанных частиц и сравнивают их с пороговыми значениями. В момент превышения данных пороговых значений производят разворот панелей СБ на угол между указанной нормалью и направлением на Солнце, который отвечает минимальной площади воздействия потоков частиц на поверхности СБ, одновременно обеспечивая КА электроэнергией. По окончании воздействия частиц возвращают панели СБ в рабочее положение. Дополнительно измеряют угол между направлением на Солнце и осью вращения панелей СБ. В случае превышения указанных пороговых значений выполняют разворот панелей СБ до достижения значения угла между нормалью к их освещенной поверхности и направлением на Солнце, соответствующего минимальной площади воздействия указанных потоков частиц на поверхности СБ (при условии обеспечения КА электроэнергией). Предлагаемая система управления включает в себя необходимые блоки и связи между ними для выполнения описанных выше операций. При этом дополнительно введены блок измерения угла между направлением на Солнце и направлением оси вращения панелей СБ и блок определения максимального тока. Технический результат изобретений состоит в исключении ситуации нехватки электроэнергии на борту КА при выполнении "защитного" отворота СБ от потоков частиц высоких энергий и возможности применения данных защитных мероприятий для произвольной ориентации КА. 2 н.п. ф-лы. 1 ил.

 

Изобретение относится к области космической техники, а именно к системам электроснабжения (СЭС) космических аппаратов (КА), и может быть использовано при управлении положением панелей их солнечных батарей (СБ).

Известен способ управления положением панелей СБ, принятый за аналог (см. [1], стр.190-194). Сущность способа заключается в следующем. Панели СБ ориентируются таким образом, что угол между нормалью к их освещенной рабочей поверхности и направлением на Солнце составляет минимальную величину, что обеспечивает максимальный приход электроэнергии от СБ.

Для обеспечения высокой эффективности работы СБ на большинстве КА устанавливают систему их автоматической ориентации на Солнце. В состав такой системы входят солнечные датчики, логически преобразующие устройства и электрические приводы, управляющие положением СБ.

Недостаток указанного способа и системы управления положением СБ КА заключается в том, что в их действиях не предусмотрена защита от негативного воздействия факторов внешней среды (ФВС) на рабочие поверхности панелей СБ, как, например, защита от газов, выходящих из работающих реактивных двигателей (РД) КА (см. [2], стр.311-312; [3], стр.2-27), и потоков протонов и электронов высоких энергий космических лучей солнечного электромагнитного излучения (ЭМИ) в периоды высокой активности Солнца (см. [2], стр.323; [7], стр.31, 33).

Наиболее близким из аналогов, принятым за прототип, является способ управления положением СБ КА, описанный в [12]. Суть способа заключается в нижеследующем.

Осуществляют разворот панелей СБ в рабочее положение, обеспечивающее снабжение КА электроэнергией, соответствующее совмещению нормали к ее освещенной рабочей поверхности с плоскостью, образуемой осью вращения панелей СБ и направлением на Солнце. Далее определяют момент времени начала негативного воздействия ФВС на рабочую поверхность СБ и осуществляют разворот панелей СБ до момента времени начала воздействия указанных факторов и возвращение панелей СБ в рабочее положение после окончания указанного воздействия. Для этого измеряют плотность текущего потока солнечного электромагнитного излучения и по измеренным значениям определяют момент времени начала солнечной активности, определяют момент времени достижения частицами высоких энергий поверхности КА. В указанный момент времени измеряют плотность потоков частиц высоких энергий - протонов и электронов - и производят сравнение измеренных значений с пороговыми значениями. В случае превышения измеренными значениями пороговых значений потоков протонов и электронов производят разворот панелей СБ на угол между нормалью к их освещенной рабочей поверхности и направлением на Солнце αs_min, соответствующий минимальной площади воздействия потоков частиц высоких энергий на поверхности СБ, определяемый соотношением:

αs_min=arccos(Iн/Im),

где Iн - ток нагрузки от потребителей КА;

Im - максимальный ток, вырабатываемый при ориентации освещенной рабочей поверхности панелей СБ перпендикулярно солнечным лучам,

при этом за момент времени начала разворота панелей СБ принимают момент времени превышения измеренными значениями верхнего порогового значения плотности потоков указанных частиц высоких энергий, а за момент времени начала возвращения панелей СБ в рабочее положение принимают момент времени, при котором плотность потоков частиц высоких энергий становится ниже верхнего порогового значения.

СБ в системе СЭС МКС являются основными источниками электроэнергии и обеспечивают работу ее бортовых потребителей, включая подзаряд аккумуляторных батарей (АБ), являющихся вторичными источниками электроэнергии на борту МКС (см. [4]). Поворотом СБ уменьшается площадь поражения рабочих поверхностей СБ потоком ФВС. Полностью развернуть панели СБ вдоль поражающего потока ФВС не предоставляется возможным, т.к. необходимо обеспечивать КА и его аккумуляторные батареи вырабатываемой СБ электроэнергией - исходя из этого площадь поражения панелей СБ потоком частиц высоких энергий уменьшается до минимальной путем разворота СБ на угол αs_min, необходимый и достаточный для обеспечения бортовых потребителей энергией.

Исходя из необходимой достаточности, для работы бортовых систем КА нагрузка от потребителей Iн не должна превышать текущий ток I. Поскольку текущий ток I от СБ определятся выражением (см. [9], стр.109):

где Im - максимальный ток, вырабатываемый при ориентации освещенной рабочей поверхности панелей солнечных батарей перпендикулярно солнечным лучам;

α - текущий угол между нормалью к рабочей поверхности СБ и направлением на Солнце,

то текущий угол α не должен превышать величину αs_min, рассчитываемую по формуле:

Система управления положением СБ для реализации данного способа, принятого за прототип, описана в [12] и содержит СБ, на жесткой подложке корпуса которой расположены четыре фотоэлектрических батареи (БФ1, БФ2, БФ3, БФ4), устройство поворота СБ (УПСБ); усилительно-преобразующее устройство (УПУ); блок управления ориентацией СБ по направлению на Солнце (БУОСБС); блок разворота СБ в заданное положение (БРСБЗП); два регулятора тока (РТ1, РТ2), блок АБ (БАБ); зарядное устройство для АБ (ЗРУ АБ); блок формирования команд на заряд АБ (БФКЗ АБ); датчик тока нагрузки (ДТН); блок управления системой энергоснабжения (БУСЭС); шина электроснабжения (ШЭ); блок измерения плотности текущего потока солнечного ЭМИ (БИПЭМИ); блок определения солнечной активности (БОСА); блок определения момента времени воздействия частиц на КА (БОМВВЧ); блок измерения плотности потоков частиц высоких энергий (БИППЧВЭ); блок определения момента времени начала управления СБ по токам нагрузки (БОМВУСБТНЗ); блок управления СБ по токам нагрузки (БУСБТНЗ). При этом СБ через свой первый выход, объединяющий выходы БФ1 и БФ4, соединена с первым входом УПСБ, и через второй выход, объединяющий выходы БФ2 и БФ3, соединена со вторым входом УПСБ. Выходы БУОСБС и БРСБЗП соединены, соответственно, с первым и вторым входами УПУ, выход которого, в свою очередь, соединен с третьим входом УПСБ. Первый и второй выходы УПСБ соединены, соответственно, с входами PT1 и РТ2, а выходы РТ1 и РТ2 соединены с ШЭ. БАБ своим входом через ЗРУ АБ соединен с ШЭ. При этом ЗРУ АБ подключено своим первым входом к указанной шине, а ко второму входу ЗРУ АБ подключен выход ДТП, вход которого подключен, в свою очередь, к ШЭ. БАБ своим выходом подключен к первому входу БФКЗ АБ, а ко второму входу указанного блока подключен первый выход БУСЭС. Выход БФКЗ АБ подключен к третьему входу ЗРУ АБ. Вторые и третьи выходы БУСЭС подключены соответственно к первым входам БУОСБС и БРСБЗП. Третий выход УПСБ соединен со вторыми входами БУОСБС и БРСБЗП. Выход БИПЭМИ соединен с входом БОСА, первый выход которого, в свою очередь, соединен с входом БОМВВЧ. Выходы БОМВВЧ и БИППЧВЭ соединены с, соответственно, первым и вторым входами блока БОМВУСБТНЗ, а вход БИППЧВЭ соединен со вторым выходом БОСА. Выход БОМВУСБТНЗ соединен с входом БУСЭС. БУСЭС своим четвертым выходом соединен с первым входом БУСБТНЗ. Второй вход БУСБТНЗ подключен ко второму выходу ДТН. Выход БУСБТНЗ подключен к третьему входу УПУ. Третий выход УПСБ соединен с третьим входом БУСБТНЗ.

В режиме электроснабжения КА система работает следующим образом.

УПСБ служит для транзитной передачи электроэнергии от СБ до PT1 и РТ2. Стабилизация напряжения на шине электропитания СЭС осуществляется одним из РТ. В то же время другой РТ находится в состоянии с замкнутыми силовыми транзисторами. Генераторы СБ работают в этом случае в режиме короткого замыкания. Когда мощность нагрузки становится больше мощности подключения генераторов СБ, в режим стабилизации напряжения переходит другой РТ и энергия незадействовавшихся генераторов поступает на шину питания СЭС. В отдельные периоды, когда мощность нагрузки может превышать мощность СБ, ЗРУ АБ, за счет разряда блока АБ, компенсирует дефицит электроэнергии на борту КА. Для указанных целей в ЗРУ АБ служит регулятор разряда АБ.

Кроме указанного регулятора ЗРУ АБ содержит и регулятор заряда АБ. Регулятор заряда осуществляет ограничение зарядного тока БАБ на уровне (Iнз±1)А, где Iнз - номинальный ток заряда, при избытке мощности БФ и стабилизацию напряжения на шине СЭС за счет регулирования зарядного тока БАБ при мощности БФ, недостаточной для обеспечения питания АБ током заряда (Iнз±1)А. Для проведения указанных зарядно-разрядных циклов в ЗРУ АБ используется информация от ДТН. При этом ДТН подключен в СЭС таким образом, что измеряет ток нагрузки не только от бортовых потребителей, но и учитывает ток заряда АБ. Заряд БАБ осуществляет ЗРУ АБ через БФКЗ АБ.

Одновременно с работой в режиме электроснабжения КА, система решает задачи управления положением плоскостей панелей СБ.

По команде с БУСЭС блок БУОСБС осуществляет управление ориентацией СБ на Солнце. БУОСБС может быть реализован на базе системы управления движением и навигацией (СУДН) КА (см. [6]). При этом входной информацией для алгоритма управления СБ являются: положение единичного вектора направления на Солнце относительно связанных с КА осей координат, определяемое алгоритмами кинематического контура СУДН; положение СБ относительно корпуса КА, получаемое в виде текущих измеренных значений угла α с датчиков угла (ДУ), установленных на УПСБ. При этом значение α всегда отсчитывается от текущей нормали к рабочей поверхности СБ (т.о. при ориентации СБ на Солнце α минимален). Выходной информацией алгоритма управления являются команды на вращение СБ относительно оси выходного вала УПСБ и команды на прекращение вращения. ДУ УПСБ выдают дискретные сигналы о положении СБ. Величина дискреты определяет точность ориентации СБ.

В штатном режиме ориентации КА, когда направление движения Солнца относительно связанных осей КА неизменно, СБ устанавливается относительно направления на Солнце с опережением по ходу движения Солнца на угол, соответствующий нескольким дискретам ДУ. Далее батарея остается в этом положении до тех пор, пока Солнце, за счет движения КА по орбите, не "переместится вперед" относительно СБ на соответствующий угол. После этого цикл вращения возобновляется.

БРСБЗП управляет СБ при помощи БУСЭС по программным уставкам. Алгоритм управления СБ по программным уставкам позволяет устанавливать батарею в любое задаваемое положение. Для этого выдается первоначально сигнал в БУОСБС об установке СБ в исходное положение. Далее при помощи БУСБЗП осуществляется требуемый разворот на угол αz. При этом для контроля угла разворота в БРСБЗП используется также информация с ДУ УПСБ.

УПУ играет роль интерфейса между БУОСБС, БРСБЗП, БУСБТНЗ и УПСБ.

БИПЭМИ производит постоянное измерение текущих потоков солнечного электромагнитного излучения (ЭМИ) по индексу солнечной активности F10,7 и передает их в БОСА. В БОСА путем сравнения текущих значений с заданными пороговыми определяется начало активности Солнца. По команде, приходящей с первого выхода БОСА на вход БОМВВЧ, в указанном последнем блоке производится определение момента времени возможного начала воздействия частиц высоких энергий на КА. Со второго выхода БОСА через вход БИППЧВЭ выдается команда на начало измерения плотности потока частиц высоких энергий. Информация о моменте времени возможного начала воздействия частиц на КА передается с выхода БОМВВЧ в БОМВУСБТНЗ через его первый вход. На второй вход БОМВУСБТНЗ передается измеренное значение плотности потоков частиц высоких энергий с БИППЧВЭ.

В БОМВУСБТНЗ осуществляется фактическая оценка негативного воздействия ФВС путем сравнения текущего измеренного значения характеристики воздействия с пороговыми значениями, начиная с момента времени, определенного БОМВВЧ. Необходимым условием получения команды на выходе БОМВУСБТНЗ является наличие двух сигналов - с выходов БОМВВЧ и БИППЧВЭ. На выходе БОМВУСБТНЗ формируется команда "начало управления СБ по токам нагрузки", которая поступает в БУСЭС.

Когда БОМВУСБТНЗ выдает команду в БУСЭС, команда, полученная с БОМВУСБТНЗ, является по приоритету более высокой, чем команды на задействование БУОСБС и БРСБЗП. Поэтому, получив указанную команду, БУСЭС отключает от управления УПСБ блоки более низкого приоритета и подключает БУСБТНЗ.

После обнуления команды с БОМВУСБТНЗ на входе БУСЭС, последний перестраивает логику своей работы. В зависимости от выполняемой программы полета КА приоритет на управление СБ отдается одному из блоков БУОСБС или БРСБЗП.

БУСБТНЗ определяет угол αs_min по выражению (2). Для расчета указанного угла используются измеренные значения Iн, получаемые с ДТН. Кроме того, с ДУ УПСБ в указанный блок поступает информация о текущем значении угла поворота СБ α. Определив значение угла αs_min алгоритм, заложенный в БУСБТНЗ, сравнивает его с текущим значением угла α, рассчитывает угол рассогласования между α и αs_min и необходимое число управляющих импульсов для задействования управляющего привода СБ. Управляющие импульсы передаются в УПУ. После преобразования и усиления указанных импульсов в УПУ они поступают на вход УПСБ и приводят привод в движение.

Способ и система для его осуществления, принятые за прототип, имеют существенный недостаток - определение угла отворота СБ по соотношениям (1), (2) предполагает поддержание такой ориентации КА, при которой возможен разворот СБ до нулевого значения угла α, что соответствует возможности совмещения нормали к рабочей поверхности СБ с направлением на Солнце. Такая возможность существует только при поддержании такой ориентации КА, при которой значение угла между направлением на Солнце и осью вращения панелей СБ составляет 90°, что является существенным ограничением для использования данного способа и системы. С другой стороны, формальное использование данных способа и системы без учета текущих значений угла между направлением на Солнце и осью вращения панелей СБ может привести к отвороту СБ от направления на Солнце на недопустимо - завышенные углы, что может привести к недостатку электроэнергии на борту КА и, как следствие, вызвать потерю работоспособности КА.

Задачей, стоящей перед предлагаемыми способом и системой для его осуществления, является исключение возможности нехватки электроэнергии на борту КА при выполнении защитного отворота СБ от Солнца и корректировка величины защитного отворота СБ от Солнца с учетом произвольной ориентации оси вращения СБ относительно направления на Солнце.

Технический результат достигается тем, что в способе управления положением солнечных батарей космического аппарата, включающем разворот панелей солнечных батарей в рабочее положение, обеспечивающее снабжение космического аппарата электроэнергией, соответствующее совмещению нормали к ее освещенной рабочей поверхности с плоскостью, образуемой осью вращения панелей солнечных батарей и направлением на Солнце, измерение плотности текущего потока солнечного электромагнитного излучения, определение момента времени начала солнечной активности, определение момента времени достижения частицами высоких энергий поверхности космического аппарата, измерение плотности потоков частиц высоких энергий, сравнение измеренных значений плотности потоков частиц высоких энергий с пороговыми значениями, разворот панелей солнечных батарей на угол между нормалью к их освещенной рабочей поверхности и направлением на Солнце, соответствующий минимальной площади воздействия потоков частиц высоких энергий на поверхности солнечных батарей при одновременном обеспечении космического аппарата электроэнергией, в момент времени превышения измеренными значениями плотности потоков частиц высоких энергий пороговых значений и возвращение панелей солнечных батарей в рабочее положение в момент времени, при котором плотность потоков частиц высоких энергий становится ниже пороговых значений, дополнительно измеряют угол между направлением на Солнце и осью вращения панелей солнечных батарей и в случае превышения измеряемыми значениями плотности потоков частиц высоких энергий сравниваемых с ними пороговых значений выполняют разворот панелей солнечных батарей до достижения значения угла между нормалью к их освещенной рабочей поверхности и направлением на Солнце αs_min_СБ, соответствующего минимальной площади воздействия потоков частиц высоких энергий на поверхности солнечных батарей при одновременном обеспечении космического аппарата электроэнергией, определяемого соотношением:

αs_min_СБ=arccos(Iн/(Imsinδ)),

где Iн - ток нагрузки от потребителей космический аппарата,

Im - максимальный ток, вырабатываемый при ориентации освещенной рабочей поверхности панелей СБ перпендикулярно солнечным лучам,

δ - угол между направлением на Солнце и осью вращения панелей солнечных батарей.

Кроме того, поставленная задача решается тем, что в систему управления положением солнечных батарей космического аппарата, включающую солнечную батарею с установленными на ней четырьмя фотоэлектрическими батареями, устройство поворота солнечных батарей, усилительно-преобразующее устройство, блок управления ориентацией солнечных батарей по направлению на Солнце, блок разворота солнечных батарей в заданное положение, два регулятора тока, блок аккумуляторных батарей, зарядное устройство для аккумуляторных батарей, блок формирования команд на заряд аккумуляторных батарей, датчик тока нагрузки, блок управления системой электроснабжения, шину электроснабжения, блок измерения плотности текущего потока солнечного электромагнитного излучения, блок определения солнечной активности, блок определения момента времени воздействия частиц на космический аппарат, блок измерения плотности потоков частиц высоких энергий, блок определения момента времени начала управления солнечными батареями по токам нагрузки, блок управления солнечными батареями по токам нагрузки, при этом солнечная батарея через свой первый выход, объединяющий выходы двух фотоэлектрических батарей, соединена с первым входом устройства поворота солнечных батарей, и через второй выход, объединяющий выходы двух других фотоэлектрических батарей, соединена со вторым входом устройства поворота солнечных батарей, а выходы блоков управления ориентацией солнечных батарей по направлению на Солнце и разворота солнечных батарей в заданное положение соединены, соответственно, с первым и вторым входами усилительно-преобразующего устройства, выход которого, в свою очередь, соединен с третьим входом устройства поворота солнечных батарей, первый и второй выходы устройства поворота солнечных батарей соединены соответственно с входами первого и второго регуляторов тока, а выходы регуляторов тока соединены с шиной электроснабжения космического аппарата, блок аккумуляторных батарей своим входом, через зарядное устройство для аккумуляторных батарей, соединен с шиной электроснабжения, при этом зарядное устройство аккумуляторных батарей подключено своим первым входом к указанной шине, а ко второму входу зарядного устройства для аккумуляторных батарей подключен датчик тока нагрузки, который подключен, в свою очередь, к шине электроснабжения, блок аккумуляторных батарей своим выходом подключен к первому входу блока формирования команд на заряд аккумуляторных батарей, а ко второму входу указанного блока подключен первый выход блока управления системой электроснабжения, выход блока формирования команд на заряд аккумуляторных батарей подключен к третьему входу зарядного устройства аккумуляторных батарей, второй и третий выходы блока управления системой электроснабжения подключены к первым входам блоков управления ориентацией солнечных батарей по направлению на Солнце и разворота солнечных батарей в заданное положение, третий выход устройства поворота солнечных батарей соединен со вторыми входами блоков управления ориентацией солнечных батарей по направлению на Солнце и разворота солнечных батарей в заданное положение, выход блока измерения плотности текущего потока солнечного электромагнитного излучения соединен с входом блока определения солнечной активности, первый выход которого, в свою очередь, соединен с входом блока определения момента времени воздействия частиц на космический аппарат, выходы блока определения момента времени воздействия частиц на космический аппарат и блока измерения плотности потоков частиц высоких энергий соединены с, соответственно, первым и вторым входами блока определения момента времени начала управления солнечными батареями по токам нагрузки, а вход блока измерения плотности потоков частиц высоких энергий соединен со вторым выходом блока определения солнечной активности, выход блока определения момента времени начала управления солнечными батареями по токам нагрузки соединен с входом блока управления системой электроснабжения, четвертый выход которого, в свою очередь, соединен с первым входом блока управления солнечными батареями по токам нагрузки, к второму и третьему входам и выходу которого подключены, соответственно, второй выход датчика тока нагрузки, третий выход устройства поворота солнечных батарей, третий вход усилительно-преобразующего устройства, дополнительно введены блок измерения угла между направлением на Солнце и направлением оси вращения панелей солнечных батарей и блок определения максимального тока, при этом выход блока измерения угла между направлением на Солнце и направлением оси вращения панелей солнечных батарей соединен с входом блока определения максимального тока, выход которого соединен с четвертым входом блока управления солнечными батареями по токам нагрузки.

Суть предлагаемого способа состоит в следующем.

С учетом возможной произвольной ориентации КА и оси вращения СБ КА относительно направления на Солнце, значение максимального тока, который могут выработать СБ КА, определяется соотношением:

где Im - максимальный ток, вырабатываемый при ориентации освещенной рабочей поверхности панелей СБ перпендикулярно солнечным лучам,

δ - текущий угол между направлением на Солнце и осью вращения панелей СБ.

Тогда, выполнив необходимые измерения угла δ и подставив в (2) вместо значения Im (использование которого в данной формуле строго корректно только для случая δ=90°) определяемое по (3) значение Imax, получим соотношение для определения угла защитного отворота СБ от Солнца, которое применимо при произвольной ориентации КА, и оси вращения СБ относительно направления Солнца:

Для реализации способа предлагается система, представленная на чертеже и содержащая следующие блоки:

1 - СБ, на жесткой подложке корпуса которой расположены четыре фотоэлектрические батареи;

2, 3, 4, 5 - БФ1, БФ2, БФ3, БФ4;

6 - УПСБ;

7 - УПУ;

8 - БУОСБС;

9 - БРСБЗП;

10, 11 - РТ1 и РТ2;

12 - БАБ;

13 - ЗРУ АБ;

14 - БФКЗ АБ;

15 - ДТН;

16 - БУСЭС;

17 - ШЭ;

18 - БИПЭМИ;

19 - БОСА;

20 - БОМВВЧ;

21 - БИППЧВЭ;

22 - БОМВУСБТНЗ;

23 - БУСБТНЗ;

24 - блок измерения угла между направлением на Солнце и направлением оси вращения панелей солнечных батарей (БИУСОВСБ);

25 - блок определения максимального тока (БОМТ).

При этом СБ (1) через свой первый выход, объединяющий выходы БФ1 (2) и БФ4 (5), соединена с первым входом УПСБ (6) и через второй выход, объединяющий выходы БФ2 (3) и БФ3 (5), соединена со вторым входом УПСБ (6). Выходы БУОСБС (8) и БРСБЗП (9) соединены, соответственно, с первым и вторым входами УПУ (7), выход которого, в свою очередь, соединен с третьим входом УПСБ (6). Первый и второй выходы УПСБ (6) соединены, соответственно, с входами PT1 (10) и РТ2 (11), а выходы PT1 (10) и PT2 (11) соединены с ШЭ (17). БАБ (12) своим входом через ЗРУ АБ (13) соединен с ШЭ (17). При этом ЗРУ АБ (13) подключено своим первым входом к указанной шине, а ко второму входу ЗРУ АБ (13) подключен выход ДТП (15), вход которого подключен, в свою очередь, к ШЭ (17). БАБ (12) своим выходом подключен к первому входу БФКЗ АБ (14), а ко второму входу указанного блока подключен первый выход БУСЭС (16). Выход БФКЗ АБ (14) подключен к третьему входу ЗРУ АБ (13). Второй и третий выходы БУСЭС (16) подключены, соответственно, к первым входам БУОСБС (8) и БРСБЗП (9). Третий выход УПСБ (6) соединен со вторыми входами БУОСБС (8) и БРСБЗП (9). Выход БИПЭМИ (18) соединен с входом БОСА (19). Первый выход БОСА (19) соединен с входом БОМВВЧ (20). Выходы БОМВВЧ (20) и БИППЧВЭ (21) соединены с, соответственно, первым и вторым входами блока БОМВУСБТНЗ (22). Вход БИППЧВЭ (21) соединен со вторым выходом БОСА (19). Выход БОМВУСБТНЗ (22) соединен с первым входом БУСЭС (16). БУСЭС (16) своим четвертым выходом соединен с первым входом БУСБТНЗ (23). Ко второму входу БУСБТНЗ (23) подключен второй выход ДТП (15). Третий выход УПСБ (6) соединен с третьим входом БУСБТНЗ (23). Выход БУСБТНЗ (23) подключен к третьему входу УПУ (7). Выход БИУСОВСБ (24) соединен с входом БОМТ (25). Выход БОМТ (25) соединен с четвертым входом БУСБТНЗ (23).

На чертеже также пунктиром показана механическая связь УПСБ (6) с корпусом СБ (1) через выходной вал привода батареи.

В режиме электроснабжения КА система работает следующим образом.

УПСБ (6) служит для транзитной передачи электроэнергии от СБ (1) до РТ1 (10) и PT2 (11). Стабилизация напряжения на шине электропитания СЭС осуществляется одним из РТ. В то же время другой РТ находится в состоянии с замкнутыми силовыми транзисторами. Генераторы СБ (1) (БФ1-БФ4) работают в этом случае в режиме короткого замыкания. Когда мощность нагрузки становится больше мощности подключения генераторов СБ (1), в режим стабилизации напряжения переходит другой РТ и энергия незадействовавшихся генераторов поступает на шину питания СЭС. В отдельные периоды, когда мощность нагрузки может превышать мощность СБ (1), ЗРУ АБ (13), за счет разряда блока АБ (12), компенсирует дефицит электроэнергии на борту КА. Для указанных целей в ЗРУ АБ (13) служит регулятор разряда АБ. Энергия БАБ (12) используется также при затенениях СБ.

Кроме указанного регулятора ЗРУ АБ (13) содержит и регулятор заряда АБ. Для проведения зарядно-разрядных циклов в ЗРУ АБ (13) используется информация от ДТН (15). При этом ДТН (15) подключен в СЭС таким образом, что измеряет ток нагрузки не только от бортовых потребителей, но и учитывает ток заряда АБ. Заряд БАБ (12) осуществляет ЗРУ АБ (13) через БФКЗ АБ (14) Для случая металлводородных АБ он описан в [5]. Суть заключается в том, что по датчикам давления, установленным внутри батарей, и температурах на корпусах батарей производится определение плотности водорода в корпусе АБ. В свою очередь плотность водорода определяет уровень заряженности АБ. При понижении плотности водорода в батарее ниже установленного уровня выдается команда на ее заряд, а при достижении максимального уровня плотности - на прекращение заряда. Указанные уровни заряда батареи регулируются БУСЭС (16) через БФКЗ АБ (14).

Одновременно с работой в режиме электроснабжения КА система решает задачи управления положением плоскостей панелей СБ (1).

По команде с БУСЭС (16) блок БУОСБС (8) осуществляет управление ориентацией СБ (1) на Солнце. БУОСБС (8) может быть реализован на базе СУДН КА (см. [6]). При этом входной информацией для алгоритма управления СБ являются: положение единичного вектора направления на Солнце относительно связанных с КА осей координат, определяемое алгоритмами кинематического контура СУДН; положение СБ относительно корпуса КА, получаемое в виде текущих измеренных значений угла α с ДУ УПСБ (6). Выходной информацией алгоритма управления являются команды на вращение СБ относительно оси выходного вала УПСБ (6), команды на прекращение вращения. ДУ УПСБ (6) выдают дискретные сигналы о положении СБ (1).

БИПЭМИ (18) производит измерение текущих потоков солнечного ЭМИ и передает их в БОСА (19). В БОСА (19) путем сравнения текущих значений с заданными пороговыми определяется начало активности Солнца. По команде, приходящей с первого выхода БОСА (19) на вход БОМВВЧ (20), в указанном последнем блоке производится определение момента времени возможного начала воздействия частиц высоких энергий на КА. Со второго выхода БОСА (19) через вход БИППЧВЭ (21) выдается команда на начало измерения плотности потока частиц высоких энергий. С выхода БИППЧВЭ (21) измеренное значение плотности потоков частиц высоких энергий передается на второй вход БОМВУСБТНЗ (22).

На вход БОМТ (25) с выхода БИУСОВСБ (24) поступает измеренное текущее значение угла между направлением на Солнце и осью вращения панелей СБ. БОМТ (25) по соотношению (3) определяет текущее максимальное значение тока, который могут выработать СБ (1) при текущей ориентации оси вращения СБ относительно направления на Солнце, и выдает его на четвертый вход БУСБТНЗ (23).

Информация о моменте времени возможного начала воздействия частиц на КА передается с выхода БОМВВЧ (20) в БОМВУСБТНЗ (22) через его первый вход. В БОМВУСБТНЗ (22) осуществляется фактическая оценка негативного воздействия ФВС путем сравнения текущего измеренного значения характеристики воздействия с пороговыми значениями, начиная с момента времени, определенного БОМВВЧ (20). Необходимым условием получения команды на выходе БОМВУСБТНЗ (22) является наличие двух сигналов - с выходов БОМВВЧ (20) и БИППЧВЭ (21).

Когда БОМВУСБТНЗ (22) выдает команду на первый вход БУСЭС (16), данный блок генерирует команду на своем четвертом выходе, которая подключает к управлению СБ БУСБТНЗ (23).

БУСБТНЗ (23) определяет угол αs_min_СБ по соотношению (4). Для расчета указанного угла используются измеренные значения тока нагрузки, получаемые с ДТН (15), и значения максимального тока, получаемые с БОМТ (25). Кроме того, с ДУ УПСБ (6) в указанный блок поступает информация о текущем значении угла поворота СБ α. Определив значение угла αs_min_СБ алгоритм, заложенный в БУСБТНЗ (23), сравнивает его с текущим значением угла α и рассчитывает угол рассогласования между α и αs_min_СБ и необходимое число управляющих импульсов для задействования управляющего привода СБ (1). Управляющие импульсы передаются в УПУ (7). После преобразования и усиления указанных импульсов в УПУ (7) они поступают на вход УПСБ (6) и приводят привод в движение.

Когда БОМВУСБТНЗ (22) не выдает команду на первый вход БУСЭС (16), данный блок, в зависимости от выполняемой программы полета КА, передает управление СБ (1) одному из блоков БУОСБС (8) и БРСБЗП (9).

Функционирование БУОСБС (8) описано выше.

БРСБЗП (9) управляет СБ (1) по программным уставкам. Алгоритм управления СБ (1) по программным уставкам позволяет устанавливать батарею в любое задаваемое положение α=αz. При этом для контроля угла разворота в БРСБЗП (9) используется информация с ДУ УПСБ (6).

Реализация БОМВУСБТНЗ (22) возможна как на базе аппаратно-программных средств ПУП КА, так и на борту КА. На выходе БОМВУСБТНЗ (22) формируется команда "начало управления СБ по токам нагрузки", которая поступает в БУСЭС (16).

Примером реализации БУСЭС (16) могут служить радиосредства служебного канала управления (СКУ) бортовыми системами КА "Ямал-100", состоящие из земной станции (ЗС) и бортовой аппаратуры (БА) (см. описание в [10, 11]). В частности, БА СКУ совместно с ЗС СКУ решает задачи выдачи в бортовую цифровую вычислительную систему (БЦВС) КА цифровой информации (ЦИ) и последующего ее квитирования. БЦВС, в свою очередь, осуществляет управление блоками БУОСБС (8), БРСБЗП (9), БУСБТНЗ (23), БФКЗ АБ (14).

В данной реализации БУСЭС (16) взаимодействие БА СКУ в части обмена ЦИ осуществляется по магистральному каналу обмена (МКО) в соответствии с интерфейсом MIL-STD-1553. В качестве абонента БЦВС используется прибор - блок сопряжения (БС) из состава БА СКУ. Процессор БЦВС периодически делает опросы состояния БС для определения доступности пакета данных. Если пакет доступен, то процессор начинает обмен данными.

УПУ (7) играет роль интерфейса между БУОСБС (8), БРСБЗП (9), БУСБТНЗ (23) и УПСБ (6) и служит для преобразования цифровых сигналов в аналоговые и усиление последних.

БИУСОВСБ (24) может быть выполнен на базе датчиков и аппаратуры СУДН КА (см. [6], [8]). БУСБТНЗ (23) является бортовым блоком КА, команды на который приходят от БУСЭС (16). Реализация БУСБТНЗ (23) и БОМТ (25) может быть произведена на базе БЦВС КА.

Таким образом, рассмотрен пример реализации основополагающих блоков системы, по результатам которых принимается решение и реализуются предложенные защитные операции.

Опишем технический эффект предлагаемых изобретений.

Предлагаемые технические решения исключают возможность нехватки электроэнергии на борту КА при выполнении защитного отворота СБ от негативного воздействия потоков частиц высоких энергий на рабочую поверхность СБ. Это обеспечивается за счет исключения случаев использования некорректного значения максимального тока от СБ при углах δ отличных от 90°. С другой стороны, поскольку величина угла δ между направлением на Солнце и осью вращения панелей СБ может существенно варьироваться в полете и быть, в общем случае, произвольной, то использование соотношений (3), (4) вместо (2) существенно уточняет максимальное значение тока от СБ и рассчитываемый угол защитного отворота СБ.

Таким образом, предлагаемые изобретения позволяют исключить возможность нехватки электроэнергии на борту КА при выполнении защитного отворота СБ от негативного воздействия потоков частиц высоких энергий на рабочую поверхность СБ и корректно выполнять защитные мероприятия при произвольной ориентации КА, а именно, при любых значениях угла между направлением на Солнце и осью вращения панелей СБ, что качественно расширяет возможности использования данных защитных мероприятий от рассматриваемого негативного воздействия.

ЛИТЕРАТУРА

1. Елисеев А.С. Техника космических полетов. Москва, "Машиностроение", 1983.

2. Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983.

3. Правила полета при выполнении совместных операций ШАТТЛА и МКС. Том С. Управление полетных операций. Космический центр им. Линдона Б.Джонсона. Хьюстон, Техас, основной вариант, 8.11.2001.

4. Система электроснабжения КА. Техническое описание. 300ГК.20Ю. 0000-АТО. РКК "Энергия", 1998.

5. Центер Б.И., Лызлов Н.Ю. Металлводородные электрохимические системы. Ленинград. "Химия", Ленинградское отделение, 1989.

6. Система управлением движением и навигации КА. Техническое описание. 300ГК.12Ю. 0000-АТО. РКК "Энергия", 1998.

7. Гальперин Ю.И., Дмитриев А.В., Зеленый Л.М., Панасюк Л.М. Влияние космической погоды на безопасность авиационных и космических полетов. "Полет 2001", стр.27-87.

8. Инженерный справочник по космической технике. Изд-во МО ССР, М., 1969.

9. Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. Москва. "Наука", 1984.

10. Земная станция служебного канала управления КА "Ямал". Руководство по эксплуатации. ЗСКУГК.0000-0РЭ. РКК "Энергия", 2001.

11. Бортовая аппаратура служебного канала управления КА "Ямал". Техническое описание. 300ГК.15Ю. 0000А201-ОТО. РКК "Энергия", 2002.

12. Ковтун B.C., Соловьев С.В., Заикин С.В., Городецкий А.А. Способ управления положением солнечных батарей космического аппарата и система для его осуществления. Патент РФ 2242408 по заявке 2003108114/11 от 24.03.2003 г.

1. Способ управления положением солнечных батарей космического аппарата, включающий разворот панелей солнечных батарей в рабочее положение, обеспечивающее снабжение космического аппарата электроэнергией и соответствующее совмещению нормали к их освещенной рабочей поверхности с плоскостью, образуемой осью вращения панелей солнечных батарей и направлением на Солнце, измерение плотности текущего потока солнечного электромагнитного излучения, определение момента времени начала солнечной активности, определение момента времени достижения частицами высоких энергий поверхности космического аппарата, измерение плотности потоков частиц высоких энергий, сравнение измеренных значений плотности потоков частиц высоких энергий с пороговыми значениями, разворот панелей солнечных батарей на угол между нормалью к их освещенной рабочей поверхности и направлением на Солнце, соответствующий минимальной площади воздействия потоков частиц высоких энергий на поверхности солнечных батарей при одновременном обеспечении космического аппарата электроэнергией от солнечных батарей, в момент времени превышения измеренными значениями плотности потоков частиц высоких энергий пороговых значений и возвращение панелей солнечных батарей в рабочее положение в момент времени, при котором плотность потоков частиц высоких энергий становится ниже пороговых значений, отличающийся тем, что дополнительно измеряют угол между направлением на Солнце и осью вращения панелей солнечных батарей и в случае превышения измеряемыми значениями плотности потоков частиц высоких энергий сравниваемых с ними пороговых значений выполняют разворот панелей солнечных батарей до достижения значения угла между нормалью к их освещенной рабочей поверхности и направлением на Солнце αs_min_СБ соответствующего минимальной площади воздействия потоков частиц высоких энергий на поверхности солнечных батарей при одновременном обеспечении космического аппарата электроэнергией, определяемого соотношением

αs_min_СБ=arccos(Iн/(Imsinδ)),

где Iн - ток нагрузки от потребителей космический аппарата;

Im - максимальный ток, вырабатываемый при ориентации освещенной рабочей поверхности панелей СБ перпендикулярно солнечным лучам;

δ - угол между направлением на Солнце и осью вращения панелей солнечных батарей.

2. Система управления положением солнечных батарей космического аппарата, представляющих собой установленные на панелях четыре фотоэлектрические солнечные батареи, включающая устройство поворота указанных солнечных батарей, усилительно-преобразующее устройство, блок управления ориентацией солнечных батарей по направлению на Солнце, блок разворота солнечных батарей в заданное положение, два регулятора тока, блок аккумуляторных батарей, зарядное устройство для аккумуляторных батарей, блок формирования команд на заряд аккумуляторных батарей, датчик тока нагрузки, блок управления системой электроснабжения, шину электроснабжения, блок измерения плотности текущего потока солнечного электромагнитного излучения, блок определения солнечной активности, блок определения момента времени воздействия частиц высоких энергий на космический аппарат, блок измерения плотности потоков частиц высоких энергий, блок определения момента времени начала управления солнечными батареями по токам нагрузки, блок управления солнечными батареями по токам нагрузки, при этом солнечная батарея через свой первый выход, объединяющий выходы двух фотоэлектрических батарей, соединена с первым входом устройства поворота солнечных батарей, и через второй выход, объединяющий выходы двух других фотоэлектрических батарей, соединена со вторым входом устройства поворота солнечных батарей, а выходы блоков управления ориентацией солнечных батарей по направлению на Солнце и разворота солнечных батарей в заданное положение соединены, соответственно, с первым и вторым входами усилительно-преобразующего устройства, выход которого в свою очередь соединен с третьим входом устройства поворота солнечных батарей, первый и второй выходы устройства поворота солнечных батарей соединены соответственно с входами первого и второго регуляторов тока, а выходы регуляторов тока соединены с шиной электроснабжения космического аппарата, блок аккумуляторных батарей своим входом, через зарядное устройство для аккумуляторных батарей, соединен с шиной электроснабжения, при этом зарядное устройство аккумуляторных батарей подключено своим первым входом к указанной шине, а ко второму входу зарядного устройства для аккумуляторных батарей подключен датчик тока нагрузки, который подключен, в свою очередь, к шине электроснабжения, блок аккумуляторных батарей своим выходом подключен к первому входу блока формирования команд на заряд аккумуляторных батарей, а ко второму входу указанного блока подключен первый выход блока управления системой электроснабжения, выход блока формирования команд на заряд аккумуляторных батарей подключен к третьему входу зарядного устройства аккумуляторных батарей, второй и третий выходы блока управления системой электроснабжения подключен к первым входам блоков управления ориентацией солнечных батарей по направлению на Солнце и разворота солнечных батарей в заданное положение, третий выход устройства поворота солнечных батарей соединен со вторыми входами блоков управления ориентацией солнечных батарей по направлению на Солнце и разворота солнечных батарей в заданное положение, выход блока измерения плотности текущего потока солнечного электромагнитного излучения соединен с входом блока определения солнечной активности, первый выход которого, в свою очередь, соединен с входом блока определения момента времени воздействия частиц на космический аппарат, выходы блока определения момента времени воздействия частиц на космический аппарат и блока измерения плотности потоков частиц высоких энергий соединены с, соответственно, первым и вторым входами блока определения момента времени начала управления солнечными батареями по токам нагрузки, а вход блока измерения плотности потоков частиц высоких энергий соединен со вторым выходом блока определения солнечной активности, выход блока определения момента времени начала управления солнечными батареями по токам нагрузки соединен с входом блока управления системой электроснабжения, четвертый выход которого, в свою очередь, соединен с первым входом блока управления солнечными батареями по токам нагрузки, ко второму и третьему входам и выходу которого подключены, соответственно, второй выход датчика тока нагрузки, третий выход устройства поворота солнечных батарей, третий вход усилительно-преобразующего устройства, отличающаяся тем, что в нее дополнительно введены блок измерения угла между направлением на Солнце и направлением оси вращения панелей солнечных батарей и блок определения максимального тока, при этом выход блока измерения угла между направлением на Солнце и направлением оси вращения панелей солнечных батарей соединен с входом блока определения максимального тока, выход которого соединен с четвертым входом блока управления солнечными батареями по токам нагрузки.



 

Похожие патенты:

Изобретение относится к формируемым в космосе бескаркасным центробежным конструкциям (БЦК), которые могут быть использованы для развертывания на орбите солнечных батарей, отражателей света и других, преимущественно крупногабаритных, систем.

Изобретение относится к космической энергетике и конкретно к пленочным солнечным батареям (СБ), преимущественно на основе аморфного кремния. .

Изобретение относится к энергообеспечению бортовых систем космических аппаратов. .

Изобретение относится к конструкциям спутников малой массы и средств их установки на носителе. .

Изобретение относится к энергообеспечению бортовых систем космических аппаратов (КА). .

Изобретение относится к космической области, а именно к способам управления группировками близколетящих искусственных спутников Земли, а более точно, касается управления группой спутников, размещенных на геостационарной орбите (ГСО) в одних и тех же или пересекающихся долготных и широтных диапазонах.

Изобретение относится к системам энергоснабжения космических аппаратов (КА) на основе солнечных батарей. .

Изобретение относится к устройствам для межпланетных полетов, исследования и освоения небесных тел. .

Изобретение относится к оборудованию космических аппаратов, развертываемому из транспортного в рабочее состояние на орбите. .

Изобретение относится к астронавигации, управлению угловым и орбитальным положением космического аппарата (КА). .

Изобретение относится к ракетной технике и может быть использовано при старте ракет, преимущественно баллистических с жидкостными маршевыми двигателями, с целью выведения полезного груза на орбиту.

Изобретение относится к космической области, а именно к способам управления группировками близколетящих искусственных спутников Земли, а более точно, касается управления группой спутников, размещенных на геостационарной орбите (ГСО) в одних и тех же или пересекающихся долготных и широтных диапазонах.

Изобретение относится к области терминального управления траекторным движением разгонных блоков, выводящих космические аппараты на заданную орбиту с помощью маршевого двигателя.

Изобретение относится к космонавтике и может быть использовано при ведении космической деятельности - исследованиях космического пространства, планет солнечной системы, наблюдений Земли из космоса и т.п., при которых необходимо определять пространственные координаты космических аппаратов (КА) и составляющие вектора его скорости.

Изобретение относится к космической технике, а более конкретно к бортовым средствам терминального управления разгонных блоков (РБ) с нерегулируемыми маршевыми ракетными двигателями.

Изобретение относится к космической технике и может быть использовано при проектировании систем управления движением космических аппаратов (КА). .

Изобретение относится к ракетно-космической технике и может быть использовано при создании ракет-носителей (РН), в том числе конверсионных, для выведения космических аппаратов на околоземные орбиты.

Изобретение относится к космической технике, а более конкретно к методам управления орбитальными маневрами разгонных блоков с маршевыми ракетными двигателями. .

Изобретение относится к системам автоматического управления нестационарными, преимущественно космическими объектами. .

Изобретение относится к области космической техники, а именно к системам электроснабжения (СЭС) космических аппаратов (КА), и может быть использовано при управлении положением панелей их солнечных батарей (СБ)
Наверх