Способ гидроочистки дизельного топлива

Изобретение относится к способам гидроочистки дизельного топлива и может найти применение в нефтегазоперерабатывающей промышленности. Способ осуществляется гидроочисткой дизельного топлива путем его каталитической обработки в присутствии водородсодержащего газа при повышенных температуре и давлении с получением гидрогенизата, сепарации гидрогенизата с получением водородсодержащего газа и жидкой фазы и стабилизации жидкой фазы, отличающийся тем, что с целью увеличения степени обессеривания, 15-25% жидкой фазы рециркулируют на смешение с исходным дизельным топливом. Технический результат: увеличение глубины гидрообессеривания дизельного топлива на 3-6%. 1 табл., 1 ил.

 

Изобретение относится к способам гидроочистки дизельного топлива и может найти применение в нефтегазоперерабатывающей промышленности.

Присутствие соединений серы в нефтепродуктах вызывает усиленную коррозию аппаратуры, ухудшает условия эксплуатации двигателя, снижает сроки службы оборудования, а также требует защиты окружающей среды от вредного действия окислов серы, образующихся при сжигании сернистых соединений.

Степень активности соединений серы в реакциях гидрогенолиза различна и убывает в ряду: меркаптаны > сульфиды > тиофены > бензотиофены > дибензотиофены. В дизельных фракциях доля наиболее трудногидрируемых соединений тиофенового ряда составляет 50-60% от общего содержания соединений серы и сосредоточены они в наиболее тяжелых фракциях, выкипающих выше 330°С.

Неодинаковая степень активности серосодержащих соединений различных групп и их неравномерное распределение во фракциях вызывают трудности при подборе технологического режима для наиболее полного удаления соединений серы в процессе гидроочистки. В частности, одним из таких показателей технологического режима является объемная скорость подачи сырья в реактор, которая для низкокипящих фракций дизельного топлива может быть высокой (до 5-8 ч-1), а для высококипящих - не должна превышать 1,5-2,0 ч-1. Для обеспечения глубокой гидроочистки дизельного топлива необходимо при однореакторной схеме установки поддерживать низкие объемную скорость подачи сырья и производительность, либо иметь двухреакторную схему, либо низкокипящие и высококипящие фракции дизельного топлива подвергать гидроочистке раздельно при разном технологическом режиме.

Известен способ гидроочистки дизельного топлива [Рудин М.Г., Сомов В.Е., Фомин А.С. Карманный справочник нефтепереработчика. / Под редакцией М.Г.Рудина. - М.: ЦНИИТЭнефтехим, 2004. - 336 с. - С.157-161], по которому исходное дизельное топливо, поступающее на установку, смешивается с водородсодержащим газом (ВСГ), нагревается и подается последовательно в реакторы первой и второй ступени. Продукты реакции, выходящие из реактора второй ступени, охлаждаются и поступают в сепаратор высокого давления, где от них отделяется ВСГ, который направляется на очистку от сероводорода и далее компрессором возвращается на смешение с исходным дизельным топливом. Часть очищенного ВСГ выводится с установки как отработанный газ, а в поток очищенного ВСГ, поступающего на смешение с исходным дизельным топливом, вводится свежий ВСГ. Жидкие продукты реакции из сепаратора высокого давления направляют в сепаратор низкого давления, в котором выделяется растворенный углеводородный газ, а жидкая фаза (гидрогенизат) после нагрева подается на стабилизацию для выделения остаточного количества углеводородного газа и бензина-отгона. С низа стабилизационной колонны выводят целевой продукт установки - стабильное гидроочищенное дизельное топливо.

Недостатком этого способа являются высокие капитальные и эксплуатационные затраты, обусловленные наличием двух ступеней гидрирования с большой загрузкой катализатора.

Известен также способ гидроочистки дизельного топлива [Логинов С.А., Лебедев Б.Л., Капустин В.М. и др. Разработка новой технологии процесса гидрообессеривания дизельных топлив. - Нефтепереработка и нефтехимия. - №11. - 2001. - С.67-74], заключающийся в раздельном гидрообессеривании в разных реакторах фракций 180-300°С и 300-360°С дизельного топлива. В этом способе суммарная степень превращения сернистых соединений в составных частях дизельного топлива превысила степень превращения при гидроочистке всего исходного дизельного топлива. Это связано с тем, что глубина гидрообессеривания фр. 180-300°С существенно возросла в отсутствие трудногидрируемых соединений серы.

Недостатком данного способа также являются высокие эксплуатационные и капитальные затраты на процесс, обусловленные необходимостью предварительного разделения дизельного топлива в ректификационной колонне и последующего проведения гидроочистки в двух реакторах.

Наиболее близким по технической сущности к предлагаемому изобретению является способ каталитической гидроочистки дизельной фракции по однореакторной схеме при температуре 300-380°С и давлении 4,0-6,0 МПа [Мановян А.К. Технология первичной переработки нефти и природного газа: Учебное пособие для вузов. - М.: Химия, 1999. - 586 с. - С.439-441].

Очищаемое сырье смешивается с циркулирующим водородсодержащим газом (ВСГ), нагревается в печи и подается в реактор. Выходящие из реактора продукты реакции охлаждаются, поступают в сепаратор высокого давления, где от них отделяется ВСГ, который направляется на очистку от сероводорода и далее компрессором возвращается на смешение с исходным дизельным топливом. Часть очищенного ВСГ выводится с установки как отработанный газ, а в поток очищенного ВСГ, поступающего на смешение с исходным дизельным топливом, вводится свежий ВСГ. Жидкие продукты реакции из сепаратора вновь нагреваются и подаются в ректификационную колонну для стабилизации и выделения углеводородного газа и бензина-отгона. С низа стабилизационной колонны выводят целевой продукт установки - стабильное гидроочищенное дизельное топливо.

Достоинствами данного способа, по сравнению с рассмотренными аналогами, являются сравнительно низкие капитальные и эксплуатационные затраты. Недостатком данного способа является низкая степень гидрообессеривания дизельной фракции, находящаяся на уровне 70-90%.

Задачей предлагаемого изобретения является увеличение степени гидрообессеривания дизельного топлива.

Решение поставленной задачи достигается предлагаемым способом гидроочистки дизельного топлива, который поясняется чертежом где 1 - исходное дизельное топливо; 2 - циркулирующий ВСГ; 3, 6 - теплообменники; 4 - трубчатая печь; 5 - реактор; 7 - сепаратор высокого давления; 8 - блок очистки ВСГ от сероводорода; 9 - компрессор; 10 - сероводород; 11 - отдув ВСГ; 12 - свежий ВСГ; 13 - жидкая фаза сепаратора высокого давления; 14 - насос; 15 - нагреватель; 16 - стабилизационная колонна; 17 - углеводородные газы и бензин-отгон; 18 - гидроочищенное дизельное топливо. Способ осуществляется следующим образом. Исходное дизельное топливо 1 смешивается с циркулирующим ВСГ 2, нагревается последовательно в теплообменниках 3 и трубчатой печи 4 и поступает в реактор 5. Выходящая из реактора 5 реакционная смесь охлаждается в теплообменниках 6 и поступает в сепаратор высокого давления 7. Выходящий из сепаратора высокого давления 7 циркулирующий ВСГ, загрязненный сероводородом, поступает на блок очистки ВСГ от сероводорода 8. После последнего очищенный циркулирующий ВСГ 2 компрессором 9 подают на смешение с исходным дизельным топливом 1, а сероводород 10 - на дальнейшую переработку и утилизацию. Из потока циркулирующего ВСГ производят отдув ВСГ 11, а в поток вводят свежий ВСГ 12. Жидкую фазу сепаратора высокого давления 13 делят на две части. Первую из них в количестве 15-25 мас.% от исходного сырья насосом 14 возвращают (рециркулируют) на смешение с исходным дизельным топливом 1, а оставшуюся часть нагревают в нагревателе 15 и подают в стабилизационную колонну 16. С верха стабилизационной колонны выводят углеводородные газы и бензин-отгон 17, а с низа - гидроочищенное дизельное топливо 18.

Существенным отличительным признаком заявляемого способа является то, что часть жидкой фазы сепаратора высокого давления в количестве 15-25 мас.% от исходного сырья рециркулируют в исходное дизельное топливо.

Эффективность способа заключается в том, что рециркуляция части гидроочищенной жидкой фазы сепаратора высокого давления в сырье позволяет дополнительно подвергнуть гидроочистке трудногидрируемые серосодержащие соединения и тем самым повысить глубину гидрообессеривания на 3-6%.

Ниже приведены конкретные примеры исполнения изобретения.

Пример 1. Прототип. На установке гидроочистки дизельного топлива с содержанием общей серы 1,2 мас.% получают гидроочищенное дизельное топливо с остаточным содержанием общей серы 0,12 мас.% при следующих технологических параметрах работы реактора: температура 380°С; давление 4,5 МПа; объемная скорость подачи сырья 2,0 ч-1; кратность циркуляции ВСГ 500 нм33 сырья. Глубина гидрообессеривания составила 90%.

Пример 2. На установке гидроочистки дизельного топлива с содержанием общей серы 1,2 мас.% получают гидроочищенное дизельное топливо с остаточным содержанием общей серы 0,05 мас.% при следующих технологических параметрах работы реактора: температура 380°С; давление 4,5 МПа; объемная скорость подачи сырья 2,0 ч-1; кратность циркуляции ВСГ 500 нм33 сырья; количество рециркулируемой жидкой фазы сепаратора высокого давления в сырье 15 мас.% от исходного сырья. Глубина гидрообессеривания составила 94,7%.

Пример 3. На установке гидроочистки дизельного топлива с содержанием общей серы 0,8 мас.% получают гидроочищенное дизельное топливо с остаточным содержанием общей серы 0,05 мас.% при следующих технологических параметрах работы реактора: температура 380°С; давление 4,5 МПа; объемная скорость подачи сырья 2,0 ч-1; кратность циркуляции ВСГ 500 нм33 сырья; количество рециркулируемой жидкой фазы сепаратора высокого давления в сырье 20 мас.% от исходного сырья. Глубина гидрообессеривания составила 95,8%.

Пример 4. На установке гидроочистки дизельного топлива с содержанием общей серы 0,8 мас.% получают гидроочищенное дизельное топливо с остаточным содержанием общей серы 0,05 мас.% при следующих технологических параметрах работы реактора: температура 380°С; давление 4,5 МПа; объемная скорость подачи сырья 2,0 ч-1; кратность циркуляции ВСГ 500 нм33 сырья; количество рециркулируемой жидкой фазы сепаратора высокого давления в сырье 25 мас.% от исходного сырья. Глубина гидрообессеривания составила 93,3%.

Основные показатели работы ректификационной колонны по примерам в сравнении с прототипом продемонстрированы в таблице.

№ п.п.Наименование показателейЗначение
Пример 1 (прототип)Пример 2Пример 3Пример 4
Количество, кг/ч
1Сырье установки250000250000250000250000
2Гидроочищенное дизельное топливо240000240000240000240000
3Рецикл в сырье-375005000062500
4Производительность реактора по жидкому сырью287500300000312500
Общие показатели
1Содержание общей серы в сырье, мас.%1,21,20,80,8
2Содержание общей серы в гидроочищенном дизельном топливе, мас.%0,120.0640,0340,054
3Степень гидрообессеривания сырья, %90,094,795,893,3

Как следует из таблицы, заявляемый способ позволяет увеличить степень гидрообессеривания сырья на 3-6%.

Способ гидроочистки дизельного топлива путем его каталитической обработки в присутствии водородсодержащего газа при повышенных температуре и давлении с получением гидрогенизата, сепарации гидрогенизата с получением водородсодержащего газа и жидкой фазы и стабилизации жидкой фазы, отличающийся тем, что, с целью увеличения степени обессеривания, 15-25% жидкой фазы рециркулируют на смешение с исходным дизельным топливом.



 

Похожие патенты:

Изобретение относится к уникальному каталитическому материалу, содержащему цеолит, внедренный в носитель катализатора, и в частности, к микропористому цеолиту, внедренному в мезопористый носитель.
Изобретение относится к содержанию бензола в товарных бензинах. .
Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано при получении моторных топлив. .

Изобретение относится к способу обработки с помощью гидрокрекинга и гидроизомеризации навесок, полученных по способу Фишера-Тропша. .
Изобретение относится к способу получения малосернистых среднедистиллятных фракций с улучшенными низкотемпературными характеристиками путем их обработки в среде водорода при повышенных давлении и температуре в присутствии катализаторов или каталитических систем, характеризующемуся тем, что фракции с температурой конца кипения 210-280°С обрабатывают на катализаторах или каталитических системах, предназначенных преимущественно для превращения элементоорганических соединений; фракции с температурой начала кипения 210-280°С обрабатывают на каталитических системах, состоящих из катализаторов превращения элементоорганических соединений и н-парафиновых углеводородов; при этом катализаторы преимущественного превращения элементоорганических соединений представляют собой алюмоникель(кобальт)молибденовые оксидные катализаторы; каталитические системы преимущественного превращения элементоорганических соединений представляют собой каталитические системы, состоящие из указанных катализаторов, а катализаторы превращения н-парафиновых углеводородов содержат алюмосиликатные соединения кристаллического строения в виде цеолитов типа пентасил и активные гидрирующие компоненты в виде оксида никеля или смеси оксидов никеля и молибдена.
Изобретение относится к способу получения малосернистых среднедистиллятных фракций с улучшенными низкотемпературными характеристиками путем их обработки в среде водорода при повышенных давлении и температуре в присутствии катализаторов или каталитических систем, характеризующемуся тем, что фракции с температурой конца кипения 210-280°С обрабатывают на катализаторах или каталитических системах, предназначенных преимущественно для превращения элементоорганических соединений; фракции с температурой начала кипения 210-280°С обрабатывают на каталитических системах, состоящих из катализаторов превращения элементоорганических соединений и н-парафиновых углеводородов; при этом катализаторы преимущественного превращения элементоорганических соединений представляют собой алюмоникель(кобальт)молибденовые оксидные катализаторы; каталитические системы преимущественного превращения элементоорганических соединений представляют собой каталитические системы, состоящие из указанных катализаторов, а катализаторы превращения н-парафиновых углеводородов содержат алюмосиликатные соединения кристаллического строения в виде цеолитов типа пентасил и активные гидрирующие компоненты в виде оксида никеля или смеси оксидов никеля и молибдена.

Изобретение относится к способу гидрирования сырья среднего дистиллята, такого как дизельное топливо, чтобы получить дизельный продукт улучшенного качества. .

Изобретение относится к способу гидрирования сырья среднего дистиллята, такого как дизельное топливо, чтобы получить дизельный продукт улучшенного качества. .
Изобретение относится к способам получения сверхмалосернистого дизельного топлива и может найти применение в нефтегазоперерабатывающей промышленности. .
Изобретение относится к усовершенствованному способу гидропереработки углеводородного сырья, содержащего серу- и/или азотсодержащие загрязняющие вещества

Изобретение относится к способу получения базового масла, характеризующегося индексом вязкости в диапазоне от 80 до 140, из исходного сырья в виде вакуумного дистиллята либо в виде деасфальтированного масла в результате введения исходного сырья в присутствии водорода в контакт с катализатором, содержащим металл группы VIB и неблагородный металл группы VIII на аморфном носителе, с последующей стадией депарафинизации

Изобретение относится к способу для экономичной переработки остаточных продуктов перегонки тяжелых сырых нефтей, включающему стадии: а) подачи сырья - остатка после перегонки нефти при атмосферном давлении или в вакууме, причем 30-100% указанного сырья кипит выше 524°С, в устройство для деасфальтизации растворителями SDA, с получением потока асфальтенов и потока деасфальтизата DAO; b) переработки указанного потока асфальтенов, по меньшей мере, в одном реакторе с псевдоожиженным слоем в присутствии катализатора, где реактор эксплуатируют при общем давлении от 10,335 до 20,670 кПа, температуре 399-454°С, удельном часовом расходе жидкости от 0,1 до 1,0 ч-1 и скорости замены катализатора от 0,285 до 2,85 кг/м3 или где реактор или реакторы эксплуатируют при общем давлении от 3445 до 20,670 кПа, температуре 388-438°С, удельном часовом расходе жидкости от 0,2 до 1,5 ч-1 и скорости замены катализатора от 0,142 до 1,42 кг/м3 ; и с) переработки указанного потока деасфальтизата, по меньшей мере, в одном реакторе с псевдоожиженным слоем в присутствии катализатора, в котором на стадиях а - с общая конверсия остатка достигает более 65%

Изобретение относится к способу улучшения температуры потери подвижности углеводородного сырья, полученного в процессе Фишера-Тропша, в частности для превращения с хорошим выходом сырья, имеющего повышенные температуры потери подвижности, в, по крайней мере, одну фракцию, имеющую низкую температуру потери подвижности и высокий индекс вязкости для базовых масел, путем пропускания через катализатор каталитической депарафинизации, содержащий, по крайней мере, один цеолит (молекулярное сито), выбранный из группы, образованной цеолитами структурного типа TON (Theta-1, ZSM-22, JSI-1, NU-10 и KZ-2), по крайней мере, один цеолит ZBM-30, синтезированный предпочтительно в присутствии особого структурирующего агента, такого как триэтилентетрамин, по крайней мере, одну неорганическую пористую матрицу, по крайней мере, один гидрирующий-дегидрирующий элемент, предпочтительно выбранный из элементов группы VIB и группы VIII Периодической системы элементов
Наверх