Подшипник скольжения

Изобретение относится к подшипникам скольжения, способным выполнять функции как опор, так и уплотнений, разделяющих полости с различным давлением и предназначенным для использования в высокооборотных турбонасосах, центробежных и осевых лопаточных насосах, преимущественно в насосах, использующих для смазки подшипников перекачиваемую жидкость, например в насосах турбонасосных агрегатов жидкостных ракетных двигателей. Подшипник скольжения, смазываемый перекачиваемой насосом жидкостью, содержит вал и охватывающую его втулку, внутренняя поверхность которой содержит участок с равномерно расположенными по окружности клиновидными углублениями, глубина которых уменьшается в направлении вращения вала. На внутренней поверхности втулки выполнен дополнительный гладкий цилиндрический участок, образующий с валом зазор, равный или меньший по сравнению с зазором между валом и участком поверхности с клиновидными углублениями. Участок с клиновидными углублениями выполнен выходящим на торец втулки, обращенный в полость, из которой подается смазка. Гладкий участок выполнен выходящим на торец, обращенный в полость, куда смазка сливается. Технический результат: повышение ресурса насосов и повышение к.п.д. за счет применения подшипников скольжения, упрощение конструкции при совмещении функций опоры и уплотнения в одном узле и обеспечение возможности замены шарикоподшипников на подшипники скольжения без существенного изменения и усложнения конструкции. 1 з.п. ф-лы, 4 ил.

 

Область техники

Изобретение относится к подшипникам скольжения, способным выполнять функции как опор, так и уплотнений, разделяющих полости с различным давлением и предназначенных для использования в высокооборотных турбонасосах, центробежных и осевых лопаточных насосах, преимущественно в насосах, использующих для смазки подшипников перекачиваемую жидкость, например в насосах турбонасосных агрегатов жидкостных ракетных двигателей.

Уровень техники

В технике нашли широкое применение многоклиновые подшипники, отличительным признаком которых являются клиновидные углубления, равномерно расположенные по окружности на внутренней поверхности втулки (см., например, С.А.Чернавский, Подшипники скольжения. М., Машгиз, 1963 г., стр.145, фиг.35а и 35б). Такие подшипники обеспечивают высокую устойчивость ротора за счет образования во время работы нескольких зон высокого давления.

Указанные подшипники принимаем за аналог предлагаемого изобретения.

Недостатком аналога является увеличенное за счет клиновидных углублений проходное сечение рабочего зазора, которое делает подшипник не экономичным при работе с осевым протоком смазывающей жидкости.

Из а.с. СССР №929901 по классу МК3 F16C 17/02, дата публикации 23.05.85, известен подшипник скольжения высокооборотных турбомашин. Этот подшипник содержит вал и охватывающую его втулку, между которыми образован рабочий зазор. Внутренняя поверхность втулки разделена в осевом направлении на два участка, на каждом из которых выполнены клиновидные углубления. Участки разделены кольцевой канавкой. Смазка подается в указанную канавку через отверстия, выполненные во втулке, и по рабочему зазору вытекает в обе стороны через торцы подшипника.

Данный подшипник принимается за прототип предлагаемого изобретения.

Недостатки прототипа заключаются в следующем:

- принятая схема подвода и отвода смазки требует при установке подшипника в насос специально предусмотренных магистралей и/или полостей для подвода и отвода смазки, отделенных уплотнениями как друг от друга, так и от некоторых других полостей насоса;

- увеличенное за счет клиновидных углублений проходное сечение рабочего зазора делает подшипник не экономичным как при работе на больших перепадах смазывающей жидкости, так и при использовании подшипника в качестве уплотнения, разделяющего полости с различным давлением.

Раскрытие изобретения

Задача, на решение которой направлено изобретение, состоит в повышении ресурса насосов и повышения кпд за счет применения подшипников скольжения, упрощения конструкции при совмещении функций опоры и уплотнения в одном узле и обеспечения возможности замены шарикоподшипников на подшипники скольжения без существенного изменения и усложнения конструкции.

Полученный технический результат заключается в создании подшипника, способного работать при осевом протоке смазки и значительных перепадах давления, выполняя при этом дополнительную функцию уплотнения, разделяющего полости с различным давлением, например вход и выход рабочего колеса или колес разных ступеней насоса и использующего для смазки утечку, уже имеющуюся в насосе.

Подшипник пригоден для установки вместо шарикоподшипников и не требует при этом усложнения конструкции, связанного с организацией специальных магистралей и/или полостей, предназначенных для подвода смазки к подшипнику и отвода ее, что особенно важно для насосов, имеющих жесткие ограничения по габаритам и массе, например для насосов турбонасосных агрегатов жидкостных ракетных двигателей или малорасходных высокооборотных насосов, кпд которых существенно зависит от объема утечек.

Краткое описание чертежей

На фиг.1 изображен подшипник скольжения в осевом разрезе.

На фиг.2 представлено поперечное сечение (А-А) подшипника на участке 3 (см. фиг.1 и фиг.4) и показано направление вращения вала.

На фиг.3 представлено поперечное сечение (Б-Б) подшипника на участке 4 (см. фиг.1 и фиг.4).

На фиг.4 изображен вариант подшипника с цилиндрической расточкой между участками 3 и 4.

Осуществление изобретения

Подшипник скольжения в осевом разрезе изображен на фиг.1, где 1 - вал насоса с наружным диаметром Dо, 2 - охватывающая вал втулка, внутренняя поверхность которой в осевом направлении разделена на два участка 3 и 4.

На фиг.2 и фиг.3 представлены поперечные сечения, проведенные через участки 3 и 4 (см. фиг.1) соответственно, и показаны диаметральные размеры, соответствующие этим участкам.

На участке 3, определяемом длиной a и исходным диаметром D1, выполнены равномерно расположенные по окружности клиновидные углубления, глубина которых уменьшается в направлении вращения вала, от максимального значения, определяемого диаметром D2 до нулевого, определяемого диаметром D1.

Второй участок 4, имеющий длину b, представляет собой гладкий цилиндрический пояс внутренним диаметром D3, выполненный концентрично исходной поверхности D1 участка 3.

Диаметр D3 выбирается меньшим или равным диаметру D2.

Поскольку при смещении вала в подшипнике во время работы распределение давления на участках 3 и 4 не будет совпадать, так как на участке 3 число зон высокого давления равно числу клиновидных углублений, а на участке 4 образуется только одна такая зона, то взаимодействие между зонами приведет к искажению полей давления на участках 3 и 4, что, в свою очередь, может привести к уменьшению устойчивости подшипника. Для исключения такого взаимовлияния между участками 3 и 4 может быть выполнена цилиндрическая расточка шириной с и наружным диаметром D4, превышающим максимальный диаметр клиновидных углублений D2.

Подшипник с такой расточкой представлен на фиг4.

Работа подшипника осуществляется следующим образом. Смазка подается под давлением со стороны торца участка 3 с клиновидными углублениями и вытекает с противоположной стороны подшипника через зазор между валом 1 и участком 4.

При вращении вала смазка увлекается в сужающуюся часть клиновидного углубления, образуя зоны высокого давления, обеспечивающие несущую способность подшипника, а благодаря наличию нескольких таких зон - его устойчивую работу.

Участок 4 при этом, во-первых, выполняет функцию уплотнения, ограничивающего расход через подшипник, а во-вторых, при смещении вала под действием радиальной нагрузки участок работает как гладкий гидродинамический подшипник, увеличивая тем самым несущую способность подшипника.

Кроме того, за счет варьирования при проектировании подшипника ряда геометрических параметров подшипника, а именно соотношения длин участков 3 и 4, соотношения диаметров D2 и D3 и количества клиновидных углублений, можно менять нагрузочные и динамические характеристики подшипника и расход смазки через него, обеспечивая требуемые для нормальной работы насоса значения.

Способность подшипника работать в условиях осевого протока смазки и при значительных осевых перепадах давления позволяет легко встраивать его в конструкцию насосов и использовать для смазки имеющиеся в насосе утечки между полостями с различным давлением. В этом случае не требуется привлечения специально отбираемого для смазки подшипника расхода жидкости, что существенно повышает экономичность насоса.

Таким образом, наибольшая эффективность предлагаемой конструкции достигается в насосах, подшипники которых смазываются перекачиваемой жидкостью, в том числе в малорасходных насосах, кпд которых в большой степени зависит от величины объемных потерь, т.е. утечек.

Промышленная применимость

Изобретение предназначено для использования в высокооборотных турбонасосах и центробежных или осевых лопаточных насосах, преимущественно использующих для смазки подшипников перекачиваемую жидкость. Работоспособность изобретения проверена на экспериментальной установке.

1. Подшипник скольжения, смазываемый перекачиваемой насосом жидкостью, содержащий вал и охватывающую его втулку, внутренняя поверхность которой содержит участок с равномерно расположенными по окружности клиновидными углублениями, глубина которых уменьшается в направлении вращения вала, отличающийся тем, что на внутренней поверхности втулки выполнен дополнительный гладкий цилиндрический участок, образующий с валом зазор, равный или меньший по сравнению с зазором между валом и участком поверхности с клиновидными углублениями, причем участок с клиновидными углублениями выполнен выходящим на торец втулки, обращенный в полость, из которой подается смазка, а гладкий участок выполнен выходящим на торец, обращенный в полость, куда смазка сливается.

2. Подшипник по п.1, отличающийся тем, что на внутренней поверхности втулки между двумя участками выполнена кольцевая проточка, глубина которой превышает максимальную глубину клиновидных углублений.



 

Похожие патенты:

Изобретение относится к приводу вращающейся мешалки химического реактора. .

Изобретение относится к машиностроению, а именно к области разработки и производства подшипников, в частности опорно-упорных подшипников скольжения, и может быть использовано в машинах и механизмах, применяемых на транспортных средствах, в энергетической промышленности, машиностроении и др.

Изобретение относится к точному приборостроению и может быть использовано в электроизмерительных приборах, приборах для измерения и отчета времени, микромашинах и изделиях микромеханики.

Изобретение относится к области машиностроения, в частности к конструкциям подшипников, и может быть использовано в различных отраслях, где требуются тяжелонагруженные высокотемпературные подшипники скольжения.

Изобретение относится к области машиностроения, в частности к деталям машин. .

Изобретение относится к области машиностроения, в частности к устройствам для циркуляционного смазывания жидким смазочным материалом подшипников скольжения, и может найти применение для смазывания опор скольжения и качения с размещением масляного насоса на детали с вращающимся движением в этих опорах.

Изобретение относится к области машиностроения, в частности к опорным узлам колесно-моторных блоков локомотивов, и может быть использовано при проектировании опор скольжения с повышенной несущей способностью при комбинированном нагружении опор.

Изобретение относится к области энергомашиностроения, конкретно турбостроения, в частности к устройствам масляных уплотнений подшипников скольжения турбин и генераторов, включенных в систему смазки, и также может найти применение в области машиностроения.

Изобретение относится к судовому машиностроению, в частности к дейдвудным подшипникам в валопроводах судов. .

Изобретение относится к области машиностроения, преимущественно может использоваться в машинах и аппаратах с вращающимися деталями, работающими в условиях газовой смазки, например в шпинделях металлообрабатывающих станков.

Изобретение относится к области машиностроения, в частности к конвейерным транспортным машинам, и может использоваться в конструкциях ленточных конвейеров в разных областях промышленности.

Изобретение относится к области машиностроения, а именно к технологии изготовления слоистых изделии, и может быть использовано для производства подшипников скольжения.

Изобретение относится к подшипникам скольжения преимущественно гидротурбин. .

Изобретение относится к области машиностроения, а именно к самоустанавливающимся подшипниковым узлам скольжения. .

Изобретение относится к работающим в тяжелом режиме зубчатым передачам, которые используют в механизмах привода прокатных станов. .

Изобретение относится к области турбостроения, а именно к конструкциям опорных подшипников скольжения роторов мощных турбоагрегатов и турбогенераторов. .

Изобретение относится к подшипнику с масляной пленкой, который используется в прокатных станах, а также к способу изготовления вкладыша. .

Изобретение относится к области машиностроения, конкретно - турбостроения, в частности к производству радиальных подшипников скольжения для роторов мощных турбоагрегатов и турбогенераторов.

Изобретение относится к области машиностроения, в частности к подшипникам скольжения с жидкостной и газовой смазкой, используемым для радиальной подвески роторов высокоскоростных турбомашин различного назначения, например турбохолодильников, турбодетандеров
Наверх