Способ бесконтактного измерения температуры

Изобретение относится к измерительной технике. Способ основан на использовании не менее двух последовательных циклов операций, в каждом из которых определяют выходной сигнал пирометра, пропорциональный полному тепловому излучению исследуемого объекта. В каждом из n-циклов на выходные контакты фотоприемника подают электрический сигнал расчетной величины для каждого из n-циклов, изменяющий его температуру и чувствительность, и определяют температуру объекта по n-значениям выходного сигнала пирометра, полученным в каждом из n-циклов. 3 ил.

 

Изобретение относится к радиационной пирометрии, в частности к бесконтактному измерению температуры объекта по его полному тепловому излучению, и может быть использовано в пирометрах, реализующих несколько последовательных циклов операций измерения температуры.

Известен способ бесконтактного измерения температуры, включающий два последовательных цикла операций, патент RU 2087880, МПК G01J 5/06.

Известный способ основан на подаче мощности Р1P2 на чувствительный элемент пирометра для его нагрева.

Указанный способ предусматривает в первом цикле операций нагрев корпуса пирометра до фиксированной температуры T1, после чего на чувствительный элемент пирометра направляют поток излучения от исследуемого объекта, имеющего температуру Т. Во втором цикле операций нагревают корпус пирометра до температуры Т2≠T1 и измеряют выходной сигнал чувствительного элемента. В каждом из указанных циклов при измерении выходного сигнала пирометра добиваются равенства сигналов нулю путем нагревания чувствительного элемента пирометра.

Действительную температуру определяют путем решения системы двух уравнений, составленных для каждой операции. При этом исключается коэффициент теплового излучения ε, оказывающий существенное влияние на точность измерения температуры Т.

Недостатком известного способа является необходимость нагрева корпуса пирометра, что во многих случаях недопустимо. При нагревании корпуса нагреваются находящиеся внутри его электронные приборы, что приводит к изменению их характеристик, влияющих на точность измерения температуры. Кроме того, корпус содержит пластмассовые детали, имеющие невысокую температуру плавления, что может привести к недопустимым деформациям.

Принципиальное отличие заявляемого способа от известных из уровня техники состоит в том, что для измерения используются n-последовательных циклов операций, в каждом из которых определяют выходной сигнал, пропорциональный полному тепловому излучению измеряемого объекта. В каждом из циклов на выходные контакты фотоприемника подают электрический сигнал расчетной величины для каждого из n-циклов, изменяющий температуру и чувствительность фотоприемника. Температуру объекта определяют по n-значениям выходного сигнала, полученного в каждом из n-циклов.

Заявляемый способ поясняется схемами.

На фиг.1 приведена схема структуры кремниевого n-p-n планарного фотопрнемника.

На фиг.2 изображена схема включения фотоприемника.

На фиг.3 приведена циклическая форма сигналов, подаваемых на фотоприемник.

В качестве фотоприемника, как правило, используется фотодиод, например кремниевый. Положительный источник питания соединен с катодом К.

Если засветить фотодиод, то он может проводить ток до 1 мА. На фиг.1 видно, что внутри фотодиода можно обнаружить Р-область и N-область. В фотодиоде падающий свет высвобождает носители зарядов в зоне потенциального барьера, который образуется под воздействием прикладываемого напряжения.

Проникая в полупроводниковый слой, свет создает положительные и отрицательные заряды. Поскольку диод включен в обратном направлении, то к аноду идут положительные заряды, а к катоду - отрицательные.

Фотоэлектрический ток строго пропорционален освещенности, что позволяет использовать фотодиод для бесконтактного измерения температуры. Параметры кремниевых фотодиодов зависят от температуры окружающей среды. С повышением ее на каждые 10°С темновой ток кремниевого фотодиода увеличивается в 2,5 раза. При этом чувствительность уменьшается, а максимум спектральной характеристики сдвигается.

Для использования этого эффекта на вход фотодиода подается изменяющееся по определенному закону напряжение, например ступенчатое, фиг.3. При подаче напряжения на фотодиод его температура повышается, в результате чего сопротивление фотодиода уменьшается, а максимум спектральной характеристики сдвигается. Для измерения температуры нагрева фотодиода служит термодатчик, фиг.2.

Измерение температуры фотодиода может быть осуществлено иным способом, например по изменению напряжения фотодиода при постоянной температуре.

В заявляемом способе измерения температуры на вход фотодиода подается ступенчатое напряжение, фиг.3. Величина подаваемого напряжения фиксируется для каждой ступени, а также измеряется выходной сигнал пирометра. Расчет истинной температуры осуществляется путем решения системы уравнений:

где En - выходной полезный сигнал пирометра в n-ом шаге измерения температуры;

En - коэффициент теплового излучения, апроксимируемый полиномом

(n-1) - порядка от λn;

М - характеристика, зависящая от оптической схемы и иных параметров конкретного пирометра;

f(T, λn) - спектральная плотность светимости.

Спектральная плотность светимости может быть представлена формулой Вина:

где С1, C2 - постоянные коэффициенты;

λi - длина волны;

ТT - термодинамическая температура.

При ТT = Т формула Вина описывает собственное излучение объекта, имеющего температуру Т, а при Т=Т0 - излучение стороннего объекта, переотраженное от контролируемой поверхности. При достижении термодинамического равновесия температура корпуса фотодиода может быть равной Т0.

Если заданы величины Т0, λi и вид зависимости εii), то получаем систему n- уравнений с n- неизвестными εi, Т.

Решая систему относительно Т, мы определяем температуру объекта по его излучению.

В способе по патенту RU 2087880 в каждом цикле измерения нагревается (охлаждается) корпус пирометра. Для нагревания корпуса пирометра до заданной температуры требуется определенное время, которым определяется быстродействие пирометра. В ряде случаев необходимо регистрировать колебания температуры, например при разливе расплава некоторых материалов. Для измерения температуры таких объектов пирометр, построенный по указанному способу, не обеспечивает достаточного быстродействия.

В заявляемом способе нагревается только фотоприемник. Время нагрева фотоприемника до заданной температуры существенно меньше, чем соответственное время нагрева корпуса пирометра. Поэтому быстродействие пирометра по заявляемому способу существенно больше быстродействия пирометра, построенного по патенту RU 2087880. Таким образом, пирометр, построенный по заявляемому способу, обеспечивает измерение колебаний температуры различных объектов, например температуру расплава материала при его разливе.

В ООО «ТЕХНО-АС» создан макет пирометра по заявляемому способу. Пирометр содержит фотоприемник ФД, фиг.2, на чувствительном элементе которого с помощью оптической системы строится изображение исследуемого объекта. Температура фотоприемника контролируется с помощью термодатчика Т, например термопары. На фотоприемнике ФД с помощью генератора сигнала подается ступенчатое напряжение, форма сигналов которого изображена на фиг.3. Выходной сигнал с фотоприемника поступает на усилитель и далее на блок обработки сигнала, в котором реализуется алгоритм решения вышеприведенной системы уравнений. Созданный макет пирометра показал его работоспособность.

Способ бесконтактного измерения температуры объекта, включающий не менее двух последовательных циклов операций, в каждом из которых определяют выходной сигнал пирометра, пропорциональный полному тепловому излучению, отличающийся тем, что в каждом из циклов на выходные контакты фотоприемника подают электрический сигнал расчетной величины для каждого из n циклов, изменяющий его температуру и чувствительность, при этом фиксируют величину подаваемого напряжения и контролируют температуру фотоприемника, а температуру объекта определяют по n значениям выходного сигнала пирометра, полученным в каждом из n циклов.



 

Похожие патенты:

Изобретение относится к области оптоэлектроники. .

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике и используется для измерения потоков инфракрасного излучения. .

Изобретение относится к области измерительной техники, в частности к области учета энергии, получаемой от источника энергии. .

Изобретение относится к области измерительной техники. .

Изобретение относится к области контрольно-измерительной техники и может быть использовано для измерения температуры радиационно-разогреваемых объектов контактным способом.

Изобретение относится к измерительной технике. .

Изобретение относится к области температурных измерений и может быть использовано в порошковой металлургии для измерения температуры дисперсных частиц в быстропротекающих процессах самораспространяющегося высокотемпературного синтеза (СВС) смеси дисперсных материалов.

Изобретение относится к неразрушающему контролю и может быть использовано для дефектоскопии металлических и неметаллических изделий. .

Радиометр // 2075044

Изобретение относится к области измерительной техники

Изобретение относится к теплофизике в области теплообмена излучением и касается способа измерения степени черноты покрытий и поверхностей твердых тел. Способ включает последовательное измерение температуры эталонного и исследуемого образцов, изготовленных из одного и того же материала. Эталонный и исследуемый образцы изготавливают в виде двух пластин с одинаковым покрытием, размещенных одна напротив другой покрытием наружу. При этом на пластины эталонного образца наносят покрытие с известной степенью черноты. В полость между пластинами устанавливают электронагреватель и нагревают пластины при постоянной мощности нагревателя до полного установления стационарного теплового режима. Степень черноты исследуемого образца определяют по формуле: , где Pm, P0 - мощности источника тепловыделений, затрачиваемые на нагрев эталонного и исследуемого образцов до стационарного значения температуры Ts, К; Tс - температура среды, К; σ - постоянная Стефана-Больцмана; S - теплоотдающая площадь поверхности образца, м2; εэ - степень черноты поверхности эталонного образца. Технический результат заключается в упрощении способа и повышении точности измерений. 3 з.п. ф-лы, 1 ил.

Изобретение относится к теплофизике и может быть использовано для определения радиационных характеристик поверхностей и покрытий твердых тел. Согласно заявленному способу определения степени черноты измеряют скорость изменения температуры и температуру образцов с покрытиями. Образцы изготовлены в виде двух одинаковых пластин с одинаковыми покрытиями, а в полости между данными параллельно установленными покрытиями наружу пластинами располагают нагреватель. Образцы устанавливают в воздушную среду, нагревают при постоянной мощности нагревателя. На линейном участке нагрева от температуры Tc до температуры T измеряют скорость нагрева образцов b0. Степень черноты исследуемых образцов ε, перегрев в конце линейного участка нагрева ϑ1 и продолжительность участка τ1 определяют из соответствующих аналитических выражений. Кроме того, для другого варианта осуществления заявляемого способа вычисления по приведенным зависимостям для τ1, ϑ1, ε производят последовательно итерационным методом до получения сходимости по ε при заданном значении k для значений параметров, определяемых в пределах соответствующих линейных участков изменения температуры образцов. Также заявлено устройство для осуществления указанного способа. Технический результат - повышение точности определения степени черноты. 3 н. и 1 з.п. ф-лы, 5 ил., 4 табл.

Изобретение относится к измерительной технике и может быть использовано для измерения коэффициента черноты покрытий. Заявлено устройство, содержащее идентичные по конструкции тепловой излучатель и теплосток, снабженные подключенными к выходу регуляторов температуры термоэлектрическими батареями Пельтье, на поверхности которых последовательно размещены подключенные к измерителю сигналов датчики теплового потока и покрытые с внешней стороны исследуемым материалом теплопроводящие пластины с подключенными к входам регуляторов температуры термодатчиками. Полостью теплообменника является фиксированный зазор между параллельно расположенными пластинами теплового излучателя и теплостока. Технический результат - повышение точности и расширение температурного диапазона измерений коэффициента черноты. 1 ил.

Изобретение относится к теплофизике и может быть использовано для определения температурной зависимости интегральной степени черноты покрытий и поверхностей твердых тел. Способ включает измерение температуры на внешних и внутренних поверхностях двух размещенных параллельно с небольшим зазором пластин из одного и того же материала при их одностороннем нестационарном нагреве. Исследуемые поверхности пластин обращены друг к другу. Одну из внешних поверхностей образца нагревают контактным нагревателем по заданному, например, линейному закону до максимально возможной температуры и выдерживают при ней некоторое время. На второй наружной поверхности устанавливают калориметр, например, в виде медного листа, который затем теплоизолируют с внешней стороны. По измеренным в процессе нагрева температурам на внешних поверхностях образца и тепловому потоку (а для образцов с неизвестными теплофизическими характеристиками и на внутренних поверхностях пластин) из решения обратной задачи теплопроводности получают искомую зависимость степени черноты во всем диапазоне температур. Таким образом могут быть исследованы образцы материалов как с известными, так и с неизвестными теплофизическими характеристиками. Технический результат - уменьшение объема экспериментальных исследований, повышение достоверности и точности получения интегральной степени черноты покрытий и поверхностей твердых тел. 2 н. и 4 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения пожароопасных свойств материалов и веществ. Предлагается установка по определению критического значения лучистого теплового потока. Установка включает плоскую радиационную панель, выполненную в виде рядов из металлических спиралей, намотанных на керамические трубки; рамку для образца и измерительную аппаратуру. При этом установка дополнительно содержит блок управления для регулирования теплового потока от радиационной панели, который регулирует тепловой поток в предложенной установке, с помощью термопары, установленной в керамических трубках. Кроме того, измерительная аппаратура представляет собой термопары, закрепленные на испытуемом образце. Технический результат - повышение точности измерений и уменьшение теплопотерь при проведении испытаний. 3 з.п. ф-лы, 1 ил.
Наверх