Способ получения гидроксиламинсульфата

Изобретение относится к химической промышленности, а именно - к способу получения гидроксиламинсульфата (ГАС), применяемого в производстве капролактама. Способ включает приготовление реакционной смеси, каталитическое окисление аммиака под давлением более 0,3 МПа, концентрирование нитрозного газа за счет конденсации водяных паров, смешение сконцентрированного нитрозного газа с водородом, смесью серной кислоты, воды, конденсата концентрирования нитрозного газа, конденсата вторичного пара концентрирования раствора ГАС и синтез ГАС. При этом тепло нитрозного газа используют для концентрирования азотнокислого конденсата и раствора ГАС. Азотнокислый конденсат концентрируют до массовой доли азотной кислоты 40%, который выдается как готовый продукт и может быть использован в производстве минеральных удобрений, а раствор ГАС концентрируют до массовой доли 40% за счет тепла конденсации паров дистиллята, образующихся при концентрировании азотнокислого конденсата. Техническим результатом является исключение стадий каталитического гидрирования азотнокислого конденсата, стабилизации нитрозного газа и его сжатия и, как следствие, снижение капитальных и энергетических затрат на изготовление продукта, а также упрощение управления и регулирования процесса. 1 табл., 1 ил.

 

Изобретение относится к химической промышленности, а именно - к способу получения гидроксиламинсульфата (ГАС), применяемого в производстве капролактама.

Получение концентрированного монооксида азота, применяемого в синтезе ГАС, каталитическим окислением аммиака неизбежно сопровождается образованием разбавленных растворов азотной кислоты (см. пат. США 3110563, опубликованный 12.11.1963 г.), утилизация которых приводит к значительным капитальным и эксплуатационным затратам. В производстве ГАС применяют различные методы утилизации этих отходов. Известен способ получения ГАС, включающий приготовление реакционной смеси аммиака, кислорода и водяного пара, каталитическое окисление аммиака, стабилизацию состава нитрозного газа путем гидрирования на серебряно-марганцевом катализаторе, его двухстадийное концентрирование конденсацией паров воды, смешение сконцентрированного нитрозного газа с водородом, смесью серной кислоты, воды, конденсата первой стадии концентрирования нитрозного газа, катализата после гидрирования конденсата второй стадии концентрирования нитрозного газа, каталитическое гидрирование этого конденсата в присутствии платинового катализатора и синтез ГАС (см. заявка ЕПВ №945401, МПК6 С01В 21/14, опубл. 1999 г.).

Таким образом достигается полная утилизация разбавленных азотнокислых стоков. Однако этот способ характеризуется сложностью в управлении и значительными капитальными и эксплуатационными затратами, обусловленными необходимостью стадий стабилизации нитрозного газа, его сжатия и каталитического гидрирования азотнокислого конденсата. Кроме того, тепло нитрозного газа при этом теряется безвозвратно.

Наиболее близким по технической сущности и достигаемому эффекту является способ получения ГАС, включающий приготовление реакционной смеси аммиака, кислорода и водяного пара, каталитическое окисление аммиака, стабилизацию получающегося нитрозного газа путем гидрирования на серебряно-марганцевом катализаторе, его двухстадийное концентрирование конденсацией паров воды (см. пат. РФ №2045471, МПК6 С01В 21/14, оп. 10.10.1995, Бюл. №28 - прототип). На первой стадии конденсации выделяется около 70% конденсата, содержащего азотную кислоту с массовой долей до 0,3%, на второй - образуется азотная кислота с массовой долей до 5-6%. Конденсат первой стадии направляется на разбавление серной кислоты, конденсат второй стадии после упаривания до 40-45% нагревают до 300°С и смешивают с основным потоком нитрозного газа, поступающего на стабилизацию, а пары воды направляют на приготовление смеси аммиак, кислород, пар. Как и в вышеприведенном случае, утилизация разбавленных азотнокислых стоков приводит к значительному усложнению схемы, ее ненадежности и существенным капитальным затратам.

Задачей настоящего изобретения является усовершенствование способа получения ГАС путем изменения схемы - исключения стадий каталитического гидрирования азотнокислого конденсата, стабилизации нитрозного газа и его сжатия - и параметров процесса так, чтобы снизить капитальные и эксплуатационные затраты и упростить управление и регулирование процессом.

Поставленная задача решается тем, что в способе получения ГАС, включающем приготовление реакционной смеси аммиака, кислорода и водяного пара, каталитическое окисление аммиака, концентрирование нитрозного газа за счет конденсации водяных паров, смешение сконцентрированного нитрозного газа с водородом, смесью серной кислоты, воды, конденсата концентрирования нитрозного газа и синтез ГАС, согласно изобретению каталитическое окисление аммиака осуществляют под давлением более 0,3 МПа, тепло нитрозного газа используют для концентрирования азотнокислого конденсата и раствора ГАС, при этом азотнокислый конденсат концентрируют до массовой доли азотной кислоты не менее 40%, а раствор ГАС концентрируют до массовой доли 40% за счет тепла конденсации паров дистиллята, образующихся при концентрировании азотнокислого конденсата. Конденсат с массовой долей азотной кислоты около 40% выдается как готовый продукт и может быть использован в производстве минеральных удобрений.

На чертеже приведена схема, поясняющая заявляемый способ.

Способ осуществляют следующим образом.

Для получения 1 тонны гидроксиламина в час в смесителе 1 приготавливают реакционную смесь из 817,5 кг/час аммиака, 2052,6 кг/час кислорода и 4021 кг/час водяного пара и направляют в реактор 2, где на платиноидных сетках осуществляют парокислородную конверсию аммиака под давлением более 0,3 МПа, например 0,3-0,35 МПа. Тепло реакции окисления аммиака используют для получения пара, охлаждая нитрозный газ в котловой части реактора 2. Полученный нитрозный газ (NOx) далее поступает в кипятильник 3 колонны 6 дистилляции азотнокислого конденсата, где конденсируются пары воды с выделением азотнокислого конденсата (АКК) и концентрируется нитрозный газ. Тепло конденсации паров воды используется для концентрирования азотнокислого конденсата от массовой доли 7-8,5% до массовой доли 40%. Образующийся при этом газообразный дистиллят, содержащий азотную кислоту с массовой долей до 0,25% поступает в теплообменник 7, куда в качестве охлаждающейся жидкости подается раствор ГАС с массовой долей около 24%. Нагретый за счет конденсации водяных паров дистиллята раствор ГАС поступает в сепаратор 8, где под разрежением из раствора испаряются водяные пары при температуре 60-85°С. Сконцентрированный раствор содержит ГАС с массовой долей около 40%. Нитрозный газ после кипятильника 3 колонны дистилляции 6 поступает в теплообменник 4, где происходит конденсация остаточных паров воды с образованием азотнокислого конденсата с массовой долей 7-8,5% и охлаждение концентрированного нитрозного газа до 40°С, затем он очищается от оксида азота (IV) в скруббере 5 и подается на стадию синтеза ГАС 11 в количестве 1092 кг/ час. Сконденсированный дистиллят с массовой долей азотной 0,25%, а также часть конденсата вторичного пара (ВП) после сепаратора 8 и конденсатора вторичного пара 9 направляются на разбавление концентрированной серной кислоты в стадию 10. Кубовый остаток из колонны дистилляции 6 с массовой долей азотной кислоты около 40% в количестве 1138 кг/час (455 кг/час моногидрата азотной кислоты) выдается как готовый продукт и может быть использован в производстве минеральных удобрений. Хвостовые газы (ХГ) реакторов синтеза ГАС направляют на сжигание в рекуперативную установку 15.

Для сравнения в таблице 1 приведены данные, иллюстрирующие работу установки синтеза ГАС по заявляемому способу и прототипу.

Как видно из таблицы, удельные затраты сырья на изготовление продукта выше, чем в прототипе. Но при этом в качестве продукта дополнительно получают азотную кислоту с массовой долей 40%, которую можно использовать для приготовления минеральных удобрений, а целевой продукт ГАС получают с массовой долей 40% вместо 24,6% без дополнительных энергетических затрат.

Таблица
NH3O2Н2ONO из ап.5NO в ст.11Н2 на гидр. O2Н2 в ст.11ΣH240% АККHNO3% ГАС
Ед изм.кг/чкг/чкг/чкг/чкг/чкг/чкг/чкг/чкг/чкг/ч%
По прототипу (пат. РФ №2045471)680170733451071109217,5128,1145,6--24,6
По заявляемому способу817,52052,6402110921092-128,1128,1113845540

Способ получения гидроксиламинсульфата (ГАС), включающий приготовление реакционной смеси аммиака, кислорода и водяного пара, каталитическое окисление аммиака, концентрирование нитрозного газа за счет конденсации водяных паров, смешение сконцентрированного нитрозного газа с водородом, смесью серной кислоты, воды, конденсата концентрирования нитрозного газа и синтез ГАС, отличающийся тем, что каталитическое окисление аммиака осуществляют под давлением более 0,3 МПа, тепло нитрозного газа используют для концентрирования азотнокислого конденсата и раствора ГАС, при этом азотнокислый конденсат концентрируют до массовой доли азотной кислоты не менее 40%, а раствор ГАС концентрируют до массовой доли 40% за счет тепла конденсации паров дистиллята, образующихся при концентрировании азотнокислого конденсата.



 

Похожие патенты:

Изобретение относится к химической промышленности, а именно - к способу управления процессом получения гидроксиламинсульфата, применяемого в синтезе капролактама.

Изобретение относится к аппаратам для проведения гетерогенных процессов и может быть использовано при проведении синтеза гидроксиламинсульфата в производстве капролактама в химической промышленности.

Изобретение относится к способу получения гидроксиламинсульфата, применяемого в синтезе капролактама. .

Изобретение относится к способу получения гидроксиламинсульфата, применяемого в синтезе капролактама. .

Изобретение относится к способу получения гидроксиламинсульфата (ГАС), применяемого в производстве капролактама. .

Изобретение относится к химической промышленности, а именно - к способу получения гидроксиламинсульфата (ГАС), применяемого в производстве капролактама. .

Изобретение относится к химической промышленности, а именно - к способу получения гидроксиламинсульфата (ГАС), применяемого в производстве капролактама. .

Изобретение относится к химической промышленности, а именно к способу получения гидроксиламинсульфата, применяемого в производстве капролактата. .
Изобретение относится к получению водных растворов гидроксиламина, в частности, к способам его получения нейтрализацией его солей с последующим выделением указанных растворов.
Изобретение относится к способу получения гидроксиламина взаимодействием гидроксиламин-сульфата с газообразным аммиаком, с последующим разделением раствора и солевой фракции и удалением аммиака из раствора.

Изобретение относится к способу производства гидроксиламинсульфата (ГАС) методом восстановления моноокиси азота (NO) водородом (Н 2) на катализаторе в среде серной кислоты

Изобретение относится к аппаратам для проведения физико-химических процессов при наличии газа, жидкости и частиц мелкодисперсного катализатора и может быть использовано, в частности, для синтеза гидроксиламинсульфата

Изобретение относится к аппаратам для проведения физико-химических процессов при наличии газа, жидкости и катализатора, а более конкретно - к реакторам для синтеза гидроксиламинсульфата - одного из исходных компонентов производства пластмасс полиамидной группы

Изобретение относится к катализаторам для получения сульфата гидроксиламина путем селективного гидрирования оксида азота в сернокислой среде. Данный катализатор содержит платину в количестве 0,3-1 мас.%, нанесенную на непористый или пористый углеродный носитель. При этом нанесенная платина представлена в виде частиц с размерами менее 4 нм, причем более 80 мас.% платины от общего количества металла сосредоточено в форме рентгеноаморфных частиц. Изобретение также относится к способам приготовления и регенерации описанного катализатора и способу получения сульфата гидроксиламина посредством каталитического селективного гидрирования оксида азота в сернокислой среде в присутствии данного катализатора. Использование предлагаемого катализатора позволяет увеличить селективность образования сульфата гидроксиламина при каталитическом гидрировании оксида азота в растворах серной кислоты на платиновых катализаторах, нанесенных на непористые или пористые углеродные носители. 4 н. и 1 з.п. ф-лы, 3 ил., 4 табл., 12 пр.

Изобретение относится к области синтеза солей гидроксиламина, в частности нитрата гидроксиламина, концентрированные водные растворы которого являются энергичными окислителями и составляют основу ряда топлив. Способ получения концентрированных растворов нитрата гидроксиламина включает взаимодействие эквивалентных количеств сульфата гидроксиламина и нитрата свинца Pb(NO3)2 при температуре 20-100°C, с последующим фазовым разделением суспензии раствора сульфата свинца в растворе нитрата гидроксиламина фильтрацией, отфильтрованный раствор нитрата гидроксиламина направляют на концентрирование, а сульфат свинца регенерируют и возвращают его на взаимодействие с сульфатом гидроксиламина. При этом сульфат свинца регенерируют, сначала обрабатывая его раствором щелочи, полученный оксид свинца отделяют и подвергают взаимодействию с азотной кислотой концентрации 20-30%, затем раствор нагревают до 100°C и вводят в него азотную кислоту концентрации 60-65%, раствор охлаждают до температуры окружающей среды и отделяют образовавшийся нитрат свинца. Изобретение позволяет создать более простой и технологичный способ получения концентрированных растворов НГА. 1 з.п. ф-лы, 1 ил., 7 пр.
Наверх