Ячейка для измерения электрохимических свойств сыпучих и пластичных влагонасыщенных сред

Изобретение относится к области измерительной техники и может быть использовано для изучения поляризации металлических электродов при коррозионных исследованиях. Ячейка для измерения электрохимических свойств сыпучих и пластичных влагонасыщенных сред содержит корпус и основание, выполненные из диэлектрического материала, рабочий и вспомогательный электроды и электрод сравнения. Корпус ячейки выполнен в виде полого цилиндра, а основание выполнено съемным и соединено с корпусом при помощи резьбовых крепежных элементов через уплотнительное резиновое кольцо. Ячейка снабжена крышкой из диэлектрического материала, которая крепится к корпусу при помощи резьбовых крепежных элементов, в крышку посредством резьбы установлен электрод сравнения, рабочий и вспомогательный электроды размещены в основании, при этом вспомогательный электрод изготовлен из металла, электрохимически инертного к размещенной в ячейке среде, а рабочий электрод - из металла, электрохимические свойства которого определяются. Технический результат состоит в обеспечении точности определения электрических характеристик поверхности раздела металл-раствор с сохранением естественной аэрации среды. 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано для изучения поляризации металлических электродов при коррозионных исследованиях с целью уменьшения материальных потерь при эксплуатации трубопроводов, резервуаров, котлов, деталей машин, судов, мостов и т.д., а также при разработке новых материалов для повышения надежности оборудования, которое в результате коррозии может разрушиться.

Ввиду того что коррозия имеет электрохимическую природу, коррозионные исследования проводятся с помощью измерения электрических характеристик поверхности раздела металл-раствор. Эти измерения проводятся в специальных электрохимических ячейках.

Известна стеклянная электрохимическая ячейка, содержащая металлический электрод, вспомогательный электрод и электрод сравнения, в которой для уменьшения погрешности измерения, связанной с омическим падением напряжения, предусмотрен капилляр Луггина. Эта ячейка принята в качестве стандартной поляризационной ячейки в ASTM (американское общество по испытанию материалов) [Коррозия. Справ. изд. Под ред. Шрайера. Пер. с англ. - М.: Металлургия, 1981, 632 с.]. Эти электрохимические ячейки хорошо подходят для коррозионных исследований в электролитах или газовых средах, но совершенно не пригодны для сыпучих и пластичных сред, например грунтов.

Наиболее близкой по конструкции является ячейка прямоугольной формы, представленная в ГОСТ 9.602-89, содержащая рабочий электрод, вспомогательный электрод и электрод сравнения. Ячейка предназначена для проведения коррозионных исследований в грунтах. ГОСТ 9.602-89 определяет объем пробы грунта, размеры рабочего и вспомогательного электродов, а также взаимное положение указанных электродов и электрода сравнения при проведении измерений. Недостатком указанной в ГОСТ 9.602-89 ячейки является то, что конструкция ее предусматривает постепенное заполнение грунтом ячейки послойно с последующим уплотнением. Процедура уплотнения изменяет аэрацию грунта по сравнению с естественной, при этом возникает погрешность при определении потенциала свободной коррозии и изменятся зависимость потенциал-ток при изучении поляризации электродов. Кроме этого, вспомогательный электрод в данной ячейке выполнен из углеродистой стали, которая не является электрохимически инертной к грунтовым средам, что вносит погрешность при проведении измерений за счет продуктов коррозии, образующихся на поверхности вспомогательного электрода. Исполнение данной ячейки в виде открытого контейнера приводит к испарению влаги из грунта, что изменяет электропроводность среды и вносит дополнительную погрешность.

Задачей изобретения является определение электрических характеристик поверхности раздела металл-раствор и оперативности при проведении коррозионных исследований в сыпучих и пластичных влагонасыщенных средах.

Достигаемый технический результат состоит в обеспечении точности определения электрических характеристик поверхности раздела металл-раствор с сохранением естественной аэрации среды.

Технический результат достигаются тем, что ячейка для измерения электрохимических свойств сыпучих и пластичных влагонасыщенных сред, содержащая корпус и основание, выполненные из диэлектрического материала, рабочий и вспомогательный электроды и электрод сравнения, отличается от прототипа тем, что корпус ячейки выполнен в виде полого цилиндра, а основание выполнено съемным и соединяется с корпусом при помощи резьбовых крепежных элементов через уплотнительное резиновое кольцо, ячейка снабжена крышкой из диэлектрического материала, которая крепится к корпусу при помощи винтовых крепежных элементов, в крышку посредством резьбы установлен электрод сравнения, рабочий и вспомогательный электроды размещены в основании, при этом вспомогательный электрод изготовлен из металла, электрохимически инертного к размещенной в ячейке среде, а рабочий электрод - из металла, электрохимические свойства которого определяются.

На чертеже представлен общий вид ячейки.

Ячейка состоит из корпуса 1 и основания 2, выполненных из диэлектрического материала. Основание 2 выполнено съемным и крепится к корпусу 1 с помощью резьбовых крепежных элементов 10. Между корпусом 1 и основанием 2 установлено уплотнительное резиновое кольцо 6. В ячейке размещены рабочий электрод 3 и вспомогательный электрод 4, снабженные электроизолированными токовводами 9, которые крепятся к основанию посредством резьбового соединения. Электроды 3, 4 установлены симметрично относительно продольной оси корпуса 1, их плоскости параллельны. Вспомогательный электрод 4 изготовлен из металла, электрохимически инертного к размещенной в ячейке среде, а рабочий электрод 3 - из металла, электрохимические свойства которого определяются. Согласно ГОСТ 9.602.89 электроды имеют размеры 20×20 мм и установлены на расстоянии 20 мм друг от друга и на расстоянии 50 мм от верха и низа корпуса. Ячейка снабжена крышкой 7, изготовленной из диэлектрического материала, которая крепится к корпусу 1 с помощью резьбовых крепежных элементов 11. В крышке посредством резьбового соединения установлен электрод сравнения 5. Для предотвращения смешивания электролита исследуемой среды и электролита электрода сравнения в дно электрода сравнения 5 установлена пористая мембрана 8. Конструктивное исполнение ячейки, снабженной разъемным основанием 2, позволяет размещать в ячейку исследуемую среду 12 с помощью поршневого толкателя непосредственно из керноотборника, что повышает оперативность работ при проведении коррозионных исследований, при этом сохраняется естественная аэрация исследуемой среды.

Устройство работает следующим образом.

Перед проведением коррозионных исследований данную ячейку заполняют исследуемой средой 12. Перед заполнением ячейки резьбовые крепежные элементы 10, крепящие корпус 1 и основание 2 между собой, ослабляют, что приводит к разгерметизации ячейки. Образец среды извлекают из керноприемника с помощью поршневого толкателя непосредственно в ячейку. При этом воздух из ячейки выходит через щели между корпусом 1 и основанием 2, не препятствуя перемещению поршневого толкателя. При заполнении ячейки рабочий 3 и вспомогательный 4 электроды автоматически размещаются в исследуемой среде 12, так как они установлены в основании 2 ячейки. После полного заполнения ячейки резьбовые крепежные элементы 10, крепящие корпус 1 и основание 2, затягивают. Далее в исследуемую среду на глубину 1,0-1,5 см погружают электрод сравнения 5, вытесняя часть исследуемой среды 12 из ячейки. Затем на корпус электрода сравнения 5 навинчивают крышку 7, которая крепится к корпусу 1 при помощи резьбовых крепежных элементов 11, тем самым герметизируя внутренний объем ячейки. Измерения проводят по стандартной методике с автоматической компенсацией омического падения напряжения между рабочим электродом 3 и электродом сравнения 5. В качестве измерительного прибора использует потенциостат.

После выполнения измерений резьбовые крепежные элементы 10, крепящие основание ячейки 2 и корпус 1, вывинчивают, основание 2 отделяют от корпуса 1 вместе с рабочим 3 и вспомогательным 4 электродами, крышку ячейки 7 также отсоединяют от корпуса 1 вместе с электродом сравнения 5. Далее с помощью поршневого толкателя корпус ячейки освобождают от исследуемой среды.

Предлагаемое техническое решение позволяет провести коррозионные исследования в сыпучих и пластичных влагонасыщенных средах с сохранением физических свойств и химического состава исследуемой среды. Оно обеспечивает точность измерения электрических характеристик поверхности раздела металл-раствор при проведении исследований и повышает оперативность размещения исследуемой среды в ячейку и удобство извлечения среды из ячейки после проведения измерений. Применение электрохимически инертного к исследуемой среде вспомогательного электрода предотвращает образование продуктов коррозии на его поверхности и устраняет связанную с этим погрешность измерений. Исполнение ячейки в виде герметичного контейнера препятствует испарению влаги из среды, тем самым устраняется погрешность измерений, связанную с изменением электропроводности среды при испарении влаги.

Исполнение основных составляющих ячейки (корпуса, основания, крышки и корпуса электрода сравнения) в виде цилиндрических элементов позволяет повысить производительность труда при изготовлении деталей ячейки.

Изобретение может быть использовано в трассовых и лабораторных исследованиях.

Ячейка для измерения электрохимических свойств сыпучих и пластичных влагонасыщенных сред, содержащая корпус и основание, выполненные из диэлектрического материала, рабочий и вспомогательный электроды и электрод сравнения, отличающаяся тем, что корпус ячейки выполнен в виде полого цилиндра, а основание выполнено съемным и соединяется с корпусом при помощи резьбовых крепежных элементов через уплотнительное резиновое кольцо, ячейка снабжена крышкой из диэлектрического материала, которая крепится к корпусу при помощи резьбовых крепежных элементов, в крышку посредством резьбы установлен электрод сравнения, рабочий и вспомогательный электроды размещены в основании, при этом вспомогательный электрод изготовлен из металла, электрохимически инертного к размещенной в ячейке среде, а рабочий электрод - из металла, электрохимические свойства которого определяются.



 

Похожие патенты:

Изобретение относится к одноразовым электрохимическим датчикам такого типа, которые используют для количественного анализа, например, уровней глюкозы в крови, измерения рН и т.п.

Изобретение относится к устройствам, предназначенным для биологических исследований суспензий клеток и образцов биоптатов. .

Изобретение относится к физико-химическому анализу, преимущественно к устройствам для автоматического объемного и кулонометрического титрования, и может быть использовано при оперативном контроле технологических процессов для повышения точности задания конечной точки титрования, а также возможности определения содержания анализируемого вещества.

Изобретение относится к области электротехники и может быть использовано для изготовления электронных запоминающих устройств. .

Изобретение относится к медицинской технике и может быть использовано в ветеринарии, экспериментальной биологии. .

Изобретение относится к области аналитической химии и может быть использовано для определения концентрации анализируемого вещества в носителе. .

Изобретение относится к приборам физико-химического анализа, преимущественно для объемного и кулонометрического титрования. .

Изобретение относится к химическому датчику для использования в скважинном анализе текучих сред. .

Изобретение относится к размещаемым электрохимическим датчикам такого типа, которые используют для количественного анализа, например уровней глюкозы в крови, измерения рН и т.п.

Изобретение относится к области потенциометрических методов анализа

Изобретение относится к области аналитического приборостроения и может быть использовано в кулонометрических гигрометрах для измерения массовой концентрации или объемной доли влаги в водороде, водородосодержащих газах и кислороде

Группа изобретений относится к области молекулярной биологии и электрохимии. По первому варианту способ осуществляют путем регистрации циклических вольтамперограмм рабочего электрода, модифицированного углеродными нанотрубками с нековалентно иммобилизованным на их поверхности олигонуклеотидным зондом, до и после внесения в исследуемый раствор образца нуклеиновой кислоты и по изменению емкостной характеристики делают вывод о наличии или отсутствии в образце участка, комплементарного олигонуклеотидному зонду. Второй вариант способа отличается тем, что нековалентную иммобилизацию олигонуклеотидного зонда на поверхность нанотрубок осуществляют посредством якорной группы, предварительно введенной в зонд. В этом варианте регистрируют не только изменение площади вольтамперограмм от цикла к циклу, но и появление специфического пика на циклической вольтамперограмме, связанного с фиксацией детектируемой НК в комплексе с модифицированным зондом. Интенсивность пика на циклической вольтамперограмме пропорциональна концентрации определяемой НК, что позволяет проводить количественную оценку. Устройство для реализации способа детекции специфических последовательностей нуклеиновых кислот представляет собой электрохимический, анализатор, который состоит из трехэлектродной электрохимической ячейки, электроды которой соединены с регистрирующим устройством, а рабочий электрод выполнен из кремниевой подложки, модифицированной вертикально ориентированными углеродными нанотрубками с иммобилизированным олигонуклеотидным зондом, комплементарным определяемой НК. 3 н. и 5 з.п. ф-лы, 5 ил., 4 пр.

Изобретения относятся к технике измерения содержания растворенного газа в жидких и газовых средах, предназначены в основном для применения в океанографической аппаратуре и могут быть использованы в горной, химической промышленности, в разных технологических и экологических системах измерения и контроля содержания растворенного газа в исследуемой среде. Технический результат - упрощение обеспечения основных метрологических характеристик устройства - чувствительности и показателя инерции. Дополнительный технический результат - надежное обеспечение герметизации электролитической камеры и экономия материала мембраны Сущность: электрохимический газоанализатор по первому варианту (фиг. 1) содержит электролитическую камеру 1 с капилляром 2, выходящим на прикатодную поверхность газоанализатора. Камера и капилляр заполнены электролитом. Устройство содержит анод 3, непосредственно контактирующий с электролитом камеры, и катод 4, который установлен на поверхности газоанализатора в зоне выхода капилляра. От внешней среды катод и капилляр отделяет селективно-проницаемая мембрана 5 в форме круга, которая притянута к катоду и капилляру и зафиксирована на прикатодной поверхности газоанализатора. Мембрана притянута и зафиксирована крышкой 6 в виде перевернутого стакана с осевым отверстием в дне, которая соединена с накидной гайкой 7. Мембрана притянута посредством своей краевой части, которая зажата между дном крышки и уплотнительным кольцом 8, которое расположено в полости крышки и имеет заданные модуль упругости и толщину. Фиксирование мембраны обеспечивается крышкой по замкнутой линии ребром в форме неострого угла. Проводники 9, 10 предназначены для съема выходного сигнала с анода 3 и катода 4. Проводники подключены к регистратору 11 выходного сигнала газоанализатора. Второй вариант изобретения (фиг. 2) отличается от первого тем, что функции притягивания мембраны и ее фиксации выполняют разные элементы. Как и по - первому варианту, электрохимический газоанализатор содержит электролитическую камеру 1 с капилляром 2, анод 3, катод 4, селективно-проницаемую мембрану 5 и крышку 6, фиксирующую мембрану на прикатодной поверхности газоанализатора по замкнутой линии ребром. При этом в месте взаимодействия с мембраной крышка имеет низкий коэффициент трения. Устройство содержит накидную гайку 7. В полости крышки б размещен притягивающий элемент 8 в виде перевернутого стакана с осевым отверстием в дне. Крышка 6 и притягивающий элемент 8 соединены подвижно. Накидная гайка 7 соединена с притягивающим элементом 8. В полости элемента 8 расположено уплотнительное кольцо 9 с заданными модулем упругости и высотой. Мембрана 5 притянута к катоду и капилляру элементом 8 посредством гайки 7 за счет того, что краевая часть мембраны зажата между дном притягивающего элемента и уплотнительным кольцом 9. Проводники 10, 11 снимают выходной сигнал с анодной системы и катода и подключены к регистратору 12 выходного сигнала газоанализатора. В третьем варианте изобретения (фиг. 3) функции притягивания мембраны и е£ фиксации также выполняют разные элементы. Отличия этого устройства от двух предыдущих заключаются в следующем: газоанализатор содержит электролитическую камеру 1 с капилляром 2, анод 3, катод 4, селективно-проницаемую мембрану 5 и крышку 6, фиксирующую мембрану на прикатодной поверхности газоанализатора по замкнутой линии. Устройство содержит накидную гайку 7, которая размещена в полости крышки 6 и соединена с ней подвижно. В полости накидной гайки 7 размещены притягивающий элемент 8 в виде шайбы, которая установлена на дне накидной гайки, и уплотнительное кольцо 9 с заданными модулем упругости и высотой. При этом элемент 8 в месте взаимодействия с гайкой 7 имеет низкий коэффициент трения. Мембрана притянута элементом 8, при этом краевая часть мембраны зажата между элементом 8 и уплотнительным кольцом 9. Проводники 10, 11 снимают выходной сигнал с анодной системы и катода и подключены к регистратору 12 выходного сигнала газоанализатора. 3 н. и 2 з. п. ф-лы, 3 ил.

Изобретение относится к технике измерения содержания растворенного газа в жидких и газовых средах, предназначено в основном для применения в океанографической аппаратуре и может быть использовано в горной, химической промышленности, в разных технологических и экологических системах измерения и контроля содержания растворенного газа в исследуемой среде. Технический результат - обеспечение основных метрологических характеристик устройства - чувствительность и долговременная стабильность. Дополнительный технический результат - экономия материала мембраны. Сущность: согласно первому варианту исполнения (фиг. 1) барокомпенсированный электрохимический измерительный газоанализатор содержит корпус (1), герметичную камеру (12), которая имеет капилляр (13) и заполнена электролитом, катод (16) и анод (17), или анодную систему, контактирующие с электролитом и подключенные к регистратору (18) в виде преобразователя катодного тока в выходной сигнал. Катод (16) расположен на выходе капилляра (13) во внешнюю среду. Катод (16) и капилляр (13) отделены от внешней среды селективно-проницаемой мембраной (6) в форме круга. Мембрана (6) притянута к прикатодной поверхности газоанализатора и зафиксирована на ней по замкнутой линии крышкой (7), соединенной с накидной гайкой (10). Газоанализатор содержит барокомпенсатор (11) в виде эластичного элемента, отделяющего электролит в камере (12) от внешней среды. При этом капилляр (13) выполнен в проходном элементе (3). Один конец проходного элемента (3) с уплотнением (2) жестко или с возможностью перемещения установлен в корпусе (1). Другой конец проходного элемента (3) с уплотнением (4) пропущен через отверстие втулки (5). Втулка (5) по резьбе установлена в крышке (7), установленной с уплотнением (9) в накидной гайке (10). Накидная гайка (10) по резьбе установлена на проходном элементе (3). Краевая часть мембраны (6) зажата между заплечиком крышки (7) и торцевой поверхностью втулки (5). Анод (17) или анодная система расположены в капилляре (13) или в камере (12). Камерой (12) является пространство, образованное проходным элементом (3) и корпусом (1). Это пространство отделено от внешней среды барокомпенсатором (11) в виде эластичной стенки, например резинового чулка, закрепленного на корпусе (1) и проходном элементе (3). Пространство, образованное проходным элементом (3), втулкой (5), крышкой (7) и накидной гайкой (10), заполнено электроизолирующей жидкостью (15), например маслом. Это пространство по резьбе накидная гайка (10) - проходной элемент (3) сообщается с пространством, которое образовано барокомпенсатором (11), корпусом (1) и накидной гайкой (10), заполнено электроизолирующей жидкостью (15) и отделено от внешней среды дополнительным барокомпенсатором (14) в виде эластичной стенки, например, резинового чулка, закрепленного на корпусе (1) и накидной гайке (10). Второй вариант изобретения (фиг. 2) отличается от первого тем, что проходной элемент (3) с уплотнением (2) и с возможностью перемещения установлен в корпусе (1) и с уплотнением (4) пропущен через отверстие втулки (5). Втулка (5) имеет радиальные отверстия. Втулка (5) одним концом с уплотнением (6) установлена с возможностью перемещения на корпусе (1), а другим концом по резьбе установлена в крышке (8). Крышка (8) установлена с уплотнением (10) в накидной гайке (11), которая по резьбе установлена на корпусе (1). Краевая часть мембраны (7) зажата между заплечиком крышки (8) и торцевой поверхностью втулки (5). Анод (18) или анодная система расположены в капилляре (14) или в камере (13). Камерой (13) является пространство, образованное проходным элементом (3), втулкой (5) с ее радиальными отверстиями и корпусом (1). Камера (13) отделена от внешней среды барокомпенсатором (12) в виде эластичной стенки, герметизирующей радиальные отверстия втулки (5), например в виде резинового чулка, закрепленного на втулке (5). Накидная гайка (11) имеет радиальные отверстия, расположенные вблизи радиальных отверстий втулки (5). Пространство, образованное барокомпенсатором (12), втулкой (5), крышкой (8), накидной гайкой (11) с ее радиальными отверстиями и корпусом (1), заполнено электроизолирующей жидкостью (16), например маслом. Это пространство отделено от внешней среды дополнительным барокомпенсатором (15) в виде эластичной стенки, герметизирующей радиальные отверстия накидной гайки (11) и резьбовое соединение корпус (1) - накидная гайка (11), например, в виде резинового чулка, закрепленного на корпусе (1) и накидной гайке (11).

Группа изобретений относится к медицине. Представлен портативный анализатор для исследования пробы биологической жидкости, содержащий корпус с магазином, имеющим отделения для размещения используемых для анализа диагностических полосок или тест-полосок, имеющих зону для биологической жидкости, анализирующее устройство с щелевидным приемником для используемой диагностической полоски или тест-полоски, оснащенной с одного конца электрическими контактами, и индикаторное устройство для отображения не менее одного результата анализа, причем корпус со стороны задней части выполнен с понижением, образующим плоскую поверхность, на которой вдоль корпуса или поперечно ему выполнены выступы, разделяющие плоскую поверхность понижения на отделения для размещения диагностических полосок или тест-полосок и образующие магазин, расположенных параллельно не менее чем в один ряд, при этом отделения закрыты снимаемой или открываемой крышкой, являющейся частью корпуса. Также описаны 2 других варианта портативного анализатора. Достигается расширение эксплуатационных качеств и повышение эффективности. 3 н. и 22 з.п. ф-лы, 12 ил.

Группа изобретений относится к газовому анализу. Представлен электрохимический газовый датчик, включающий: корпус, первый рабочий электрод внутри корпуса, имеющий первую часть средства газопереноса с первым слоем катализатора на ней, и по меньшей мере второй рабочий электрод внутри корпуса, имеющий вторую часть средства газопереноса со вторым слоем катализатора на ней, при этом по меньшей мере одна из первой и второй частей средства газопереноса включает по меньшей мере одну область, в которой ее структура необратимо изменена посредством по меньшей мере одного из термического сваривания, химической реакции и осаждения материала для предотвращения газопереноса через упомянутую по меньшей мере одну из первой и второй частей средства газопереноса в направлении другой из упомянутой по меньшей мере одной из первой и второй частей средства газопереноса. Также описан способ предотвращения газопереноса в вышеуказанном датчике. Достигается повышение точности и надежности анализа. 2 н. и 14 з.п. ф-лы, 15 ил.

Изобретение относится к медицине и описывает способ идентификации водорастворимого лекарственного вещества путем сравнения с эталоном. Способ характеризуется проведением ионометрии, титрометрии и спектрофотометрии, при этом ионометрические исследования проводят с использованием различных концентраций лекарственного вещества, начиная от насыщенного раствора с уменьшением концентрации идентифицируемого вещества в каждом последующем растворе кратно по сравнению с предыдущим, титрометрические зависимости измеряют в различных концентрациях идентифицируемого лекарственного вещества, начиная от насыщенного раствора с уменьшением концентрации в каждом последующем титруемом растворе ниже, чем в предыдущем, в кратное число раз, титрующий раствор вводят равномерно в течение всего процесса титрования, дополнительное измерение спектрофотометрических зависимостей проводят не менее чем в двух разных концентрациях: насыщенного раствора и разбавленного в 10-20 раз, а измерения спектрофотометрических зависимостей проводят в двух растворителях: бидистиллированной воде и ином растворителе из ряда спиртов. Изобретение обеспечивает повышение достоверности полученных данных. 18 ил., 2 табл.

Изобретение относится к конструкции электрохимических ячеек для исследований электрохимических систем методами in situ спектроскопии и микроскопии. Герметичная электрохимическая ячейка состоит из содержащего сквозную полость для размещения электролита корпуса, рабочего электрода, по крайней мере одного вспомогательного электрода и пластины, выполненной с возможностью герметичного закрепления со стороны нижнего торца корпуса. При этом рабочий электрод, который одновременно является окном для спектроскопических измерений, выполнен в виде размещенного на пористой подложке из нитрида кремния слоя графена. В корпусе ячейки предусмотрено пространство для размещения вспомогательного электрода и электрода сравнения, а также пористого стекла для разделения электролитов рабочего и вспомогательного электродов. Техническим результатом является возможность осуществления исследований электрохимических систем методами in situ спектроскопии, а также расширение диапазона рабочих давлений. 11 з.п. ф-лы, 3 ил.
Наверх