Способ обезвреживания сульфидно-щелочных жидких стоков

Изобретение относится к способам обезвреживания сульфидно-щелочных стоков и может быть использовано на нефтеперерабатывающих и нефтехимических предприятиях, использующих щелочную очистку нефтепродуктов и продуктов основного органического синтеза. Для осуществления способа в турбулентно движущийся поток сульфидно-щелочного жидкого стока подают диоксид углерода и озоновоздушную смесь последовательно в три стадии. Диоксид углерода в объемном отношении 5÷8:1 к объему жидкого стока подают только на первую по ходу движения потока стадию. На двух последующих стадиях в поток жидкого стока подают озоновоздушную смесь с содержанием озона не менее 25,0 г на 1 м3 смеси в объемном отношении 8÷10:1 к объему жидкого стока. Способ позволяет повысить эффективность процесса обезвреживания жидких стоков, сократить расход диоксида углерода и снизить токсичность газовых выбросов за счет инициированного автомодельного процесса подкисления жидких стоков образующейся серной кислотой. 1 табл.

 

Изобретение относится к способам обработки промышленных сточных вод, а именно к обезвреживанию сульфидно-щелочных стоков нефтеперерабатывающих и нефтехимических предприятий, использующих щелочную очистку нефтепродуктов и продуктов основного органического синтеза.

Известен способ переработки сернисто-щелочных сточных вод, включающий нейтрализацию сточных вод серной кислотой или ее водными растворами в две ступени при температуре не более 70°С; полученные после нейтрализации сточные воды подвергаются экстракции органическим растворителем с выделением водного слоя, содержащего сульфат натрия. Водный слой нейтрализуют щелочью и затем сушат с получением кристаллического сульфата натрия [1].

Также известен способ очистки промышленных стоков, включающий введение флокулянта, при этом перед введением флокулянта весь сток подвергается непрерывной карбонизации, осуществляемой углекислым газом, направляемым под углом навстречу потокам промышленных стоков [2].

Кроме этого, известен способ [3] очистки сернисто-щелочных промышленных стоков в присутствии катализатора, который содержит, мас.%:

фталоцианин кобальта10,0-20,0
бензойнокислая соль щелочного металла0,1-2,0
полипропилен или его смесь с полиэтиленом
низкого давленияостальное

Прототипом предлагаемого изобретения является способ [4] обезвреживания сульфидно-щелочных сточных вод нефтеперерабатывающих предприятий, который состоит в раскислении стоков диоксидом углерода с переводом солей слабой сероводородной кислоты в карбонаты и гидрокарбонаты по реакции ионного обмена с выделением свободного газообразного сероводорода (карбонизация стоков).

Недостатками известных способов является низкая степень очистки жидких стоков от сульфидов и сероорганических загрязнителей стоков (органические сульфиды, дисульфиды, тиолы и т.д.), а также высокая доля проскока диоксида углерода. Перечисленные недостатки обусловлены недостаточно высокой растворимостью диоксида углерода в воде (при 20°С составляет 0,169 мас.%) и низкой степенью ионизации угольной кислоты (константа ионизации угольной кислоты по первой ступени К1=4,01·10-7 при 18°С; константа диссоциации по второй ступени К2=5,2·10-11), вследствие чего практически невозможно достичь полного обезвреживания неорганических сульфидов из сульфидно-щелочных стоков.

Продуктами карбонизации сульфидно-щелочных стоков являются водные растворы карбонатов и гидрокарбонатов натрия и газовая фаза, содержащая диоксид углерода и сероводород. Из-за крайней токсичности и экологической опасности данного газового выброса после процесса карбонизации необходимо его обезвреживание, например, сжиганием или каталитическим окислением кислородом воздуха с образованием не менее экологически опасных окислов серы. Все указанное делает процесс обезвреживания сульфидно-щелочных стоков нефтепереработки технически сложным и экологически небезопасным.

Целью изобретения является увеличение эффективности обезвреживания сульфидно-щелочных стоков, сокращение расхода диоксида углерода на их очистку за счет инициированного автомодельного образования сильной кислоты при дополнительной подаче в жидкий поток озоновоздушной смеси и повышение экологической безопасности способа за счет снижения токсичности газовых выбросов.

Поставленная цель достигается тем, что газовые реагенты последовательно в три стадии подают в турбулентно движущийся поток сульфидно-щелочного жидкого стока, причем подачу диоксида углерода в объемном отношении 5÷8:1 к объему жидкого стока осуществляют только на первую по ходу движения потока стадию, а на двух последующих стадиях в поток жидкого стока подают озоновоздушную смесь, содержащую не менее 25,0 г озона на 1 м3 смеси в объемном отношении 8÷10:1 к объему жидкого стока, которая инициирует автомодельный процесс подкисления жидких стоков образуемой серной кислотой до достижения нужной степени обезвреживания жидких стоков.

Суть предлагаемого способа состоит в том, что сероводород, образующийся при карбонизации жидких стоков на первой стадии по реакциям:

Na2S+2СО2+2Н2O=2NaHCO3+H2S↑;

NaHS+СО22O=NaHCO3+H2S↑;

на второй стадии в газовой фазе окисляется озоновоздушной смесью:

H2S+О32O+SO2;

SO23=SO3+O2; SO2+O2=SO3; SO32О=Н2SO4.

Начиная со второй стадии, образующаяся в жидкой фазе сильная серная кислота эффективно раскисляет оставшееся количество сульфидов натрия после карбонизации:

Na2S+H2SO4=Na2SO4+H2S↑;

2NaHS+H2SO4=Na2SO4+2H2S↑;

с выделением газообразного сероводорода, который на третьей стадии после реакции с озоном вновь приводит к образованию серной кислоты. Данная автомодельная реакция заканчивается на выходе жидких стоков с третьей ступени после полного обезвреживания сульфидов.

Существенным отличительным признаком предлагаемого способа является то, что процессы окисления сероводорода и солевого обмена разнесены в разные фазы единого газожидкостного турбулентного потока. Окисление сероводорода, выделившегося в газовую фазу на первой стадии процесса, на последующих стадиях протекает в газовой фазе, состоящей из диоксида углерода, сероводорода и озоновоздушной смеси. Этим ликвидируется главный недостаток жидкофазного окисления - низкая концентрация озона в растворе, обусловленная: 1) его малой растворимостью в воде (0,057 мас.% при 20°С), еще более понижающейся в растворах солей, и 2) быстрым и непродуктивным разложением озона в щелочных растворах. Соответственно, скорость жидкофазного окисления сульфид- и гидросульфид-ионов озоном даже при очень высоких значениях констант скоростей (k=1,1×106÷3,0×109 л/моль·с) будет мала.

Взаимодействие озона с сероводородом в газовой фазе является быстрой реакцией (k≥3,0×104 л/моль·с). Ее высокая скорость, помимо прочего, обусловлена высокой концентрацией озона в газовой фазе и эффективным массообменом в турбулентном потоке. Недостаточно высокая растворимость диоксида углерода в воде перестает быть фактором, определяющим эффективность обезвреживания сульфидно-щелочного стока. Роль диоксида углерода сводится к инициированию образования сероводорода на первой стадии процесса. Соответственно, количество диоксида углерода, используемого в процессе, может быть значительно сокращено.

Кроме этого, образующиеся при газофазном окислении сероводорода окислы серы эффективно и быстро абсорбируются водой в режиме турбулентного массообмена и обеспечивают протекание в жидкой фазе превращения сульфида/гидросульфида натрия в сульфат натрия по реакции ионного обмена с образующейся серной кислотой, а также выделение газообразного сероводорода. Серная кислота образуется в количествах, эквивалентных содержанию сероводорода (сульфидов натрия), т.е. процесс протекает в автомодельном режиме. Сульфат натрия, являясь сильным электролитом, обеспечивает раскисленному стоку значение рН=7÷8, в отличие от рН=11,6 для карбонизированного стока, что облегчает его ассимиляцию на биологических очистных сооружениях.

Газовые продукты обезвреживания сульфидно-щелочных стоков содержат в своем составе только диоксид углерода, воздух и остаточные количества озона. После стандартной операции термического разложения остаточного озона газовая смесь, являясь экологически безопасной, может быть направлена в атмосферу.

Таким образом, предлагаемый способ обезвреживания сульфидно-щелочных стоков, в отличие от известных в науке и технике, обеспечивает повышение эффективности процесса очистки, сокращение расхода диоксида углерода на нейтрализацию сульфидно-щелочных жидких стоков, путем интенсификации процесса раскисления жидких стоков за счет инициированного автомодельного образования серной кислоты при подаче в поток жидких стоков озоновоздушной смеси. Кроме этого, значительно сократится выброс непрореагировавшего диоксида углерода в атмосферу.

Возможности предлагаемого способа по обезвреживанию сульфидно-щелочных стоков различных производств нефтеперерабатывающего предприятия проиллюстрированы в примере.

Пример

В эксперименте использовали два образца сульфидно-щелочных жидких стоков с установок АВТ НПЗ и установки ЭП-300, физико-химические характеристики которых приведены в таблице.

В качестве контактного аппарата применяли турбулентный смеситель-реактор вихревого типа, состоящий из трех идентичных по конструкции секций, отличающихся тем, что в первую по ходу жидкости секцию подавали диоксид углерода, а в две других - озоновоздушную смесь. Контактный аппарат выполнен таким образом, чтобы между секциями не было сборников-емкостей, в которых могло бы произойти разделение фаз гетерогенного реакционного потока и сдув из него газовой составляющей.

Для эксперимента брали по 5,0 дм3 каждого образца жидкого стока. Время пребывания каждого образца жидкого стока в пределах одной ступени во всех экспериментах выбирали одинаковым, равным 256 с. Для сопоставимости полученных результатов во всех экспериментах закреплены показатели давления в смесителях на каждой ступени (Р=2,0 атм) и гидродинамические характеристики движения потоков (F-фактор = 0,1134 Па0,5). Концентрация озона в исходной озоновоздушной смеси также фиксировалась во всех экспериментах и составляла 32,0 г/м3.

Как видно из данных, приведенных в таблице, использование предлагаемого метода по сравнению с прототипом позволило добиться практически полного обезвреживания сульфидно-щелочных жидких стоков: остаточное содержание суммарных сульфидов в обезвреженном стоке, обработанном по предлагаемому способу, составляет не более 2,05 мг/дм3, в то время как по прототипу - 1214,0 мг/дм3.

Удалось практически полностью очистить жидкие стоки от органических сульфидов (остаточное содержание не более 0,68 мг/дм3), тогда как при использовании прототипа их содержание составило 120,0 мг/дм3.

При этом расход диоксида углерода на проведение процесса обезвреживания снижен в три раза - с 0,075 м3 до 0,025 м3.

Повышение эффективности обезвреживания сульфидно-щелочных стоков, сокращение расхода диоксида углерода и снижение токсичности газовых выбросов делает целесообразным использование заявляемого изобретения «Способ обезвреживания сульфидно-щелочных жидких стоков» при проектировании и разработке перспективных процессов основной химической технологии, в частности при глубоком доокислении жидких промышленных стоков потоком озоновоздушной смеси.

ИСПОЛЬЗУЕМЫЕ ИСТОЧНИКИ

1. Патент России № 2245849. Способ переработки сернисто-щелочных сточных вод и установка для его осуществления. C02F 1/66. - Опубл. 10.02/2005 г.

2. Патент России № 2171233. Способ очистки промышленных стоков. C02F 1/56. - Опубл. 27.07/2001 г.

3. Патент России № 2053844. Катализатор для окисления сернистых соединений. B01J 31/18. - Опубл. 10.02/1996 г.

4. П.С.Баннов. Процессы переработки нефти. - Ч.3. - М., 2003, с.165.

Способ обезвреживания сульфидно-щелочных жидких стоков, включающий в себя подачу в жидкий сток диоксида углерода и озоновоздушной смеси, отличающийся тем, что газовые реагенты последовательно в три стадии подают в турбулентно движущийся поток сульфидно-щелочного жидкого стока, причем подачу диоксида углерода в объемном отношении 5÷8:1 к объему жидкого стока осуществляют только на первую по ходу движения потока стадию, а на двух последующих стадиях в поток жидкого стока подают озоновоздушную смесь с содержанием озона не менее 25,0 г на 1 м3 смеси в объемном отношении 8÷10:1 к объему жидкого стока, которая инициирует автомодельный процесс подкисления жидких стоков образующейся серной кислотой до достижения нужной степени обезвреживания жидких стоков.



 

Похожие патенты:

Изобретение относится к очистке воды, получаемой в ходе синтеза Фишера-Тропша. .

Изобретение относится к способам комбинированной: биологической и физико-химической очистки воды и может быть использовано для водоподготовки воды бассейнов для содержания или выращивания рыбы, а также морских животных, например дельфинов.

Изобретение относится к методам очистки бытовых и промышленных сточных вод от органических и минеральных примесей и может быть использовано на очистных станциях небольшой и средней производительностей.

Изобретение относится к биологической очистке сточных вод от взвешенных и растворенных органических веществ с применением микрофлоры и может быть использовано в сельском и коммунальном хозяйствах при очистке бытовых сточных вод.

Изобретение относится к области очистки воды от токсичных соединений, микроорганизмов и других загрязняющих веществ водного происхождения с использованием озона.

Изобретение относится к биологическим методам очистки воды с помощью перифитонной фильтрации, позволяющий удалять нутриенты из входящего потока воды. .

Изобретение относится к устройствам для глубокой биологической очистки бытовых сточных вод активным илом во взвешенном состоянии, используемых как в отдельно стоящих коттеджах, приусадебных домах, так и в гостиничных комплексах, школах, спортивных клубах, поселках, предприятиях общественного питания и т.

Изобретение относится к способам комплексной переработки природного газа и воздуха с одновременным получением воды питьевого и сельскохозяйственного назначения, высокооктановых компонентов бензина и газов.
Изобретение относится к водоподготовке питьевой воды из открытых водоемов. .

Изобретение относится к области очистки сточных вод коагуляцией, в частности к технологии очистки сточных вод молокоперерабатывающих заводов, содержащих, кроме неорганических соединений, высокие концентрации органических загрязнений.

Изобретение относится к области очистки и стерилизации жидких и газообразных сред электрохимическими методами, и может быть использовано для обработки питьевых и сточных вод, других жидкостей или воздуха и газов в различных отраслях хозяйства, в микробиологии, медицине и т.д.
Изобретение относится к способам обработки промывных вод водоочистных станций. .
Изобретение относится к способам обработки промывных вод водоочистных станций. .

Изобретение относится к способу очистки твердых поверхностей моющим и очищающим средством бытового и технического назначения и может быть использовано для очистки различных твердых поверхностей от минеральных и органических загрязнений.

Изобретение относится к области обработки сточных вод, содержащих по меньшей мере одно из трудноразлагаемых вредных веществ, выбранных из группы, состоящей из дибензодиоксингалогенидов, дибензофурангалогенидов, полихлорированных бифенилов, бензолгалогенидов, алкилфенолов, фенолгалогенидов, алкангалогенидов, алкенгалогенидов, сложных эфиров фталевой кислоты, бисфенолов и полициклических ароматических углеводородов.

Изобретение относится к области обработки сточных вод, содержащих по меньшей мере одно из трудноразлагаемых вредных веществ, выбранных из группы, состоящей из дибензодиоксингалогенидов, дибензофурангалогенидов, полихлорированных бифенилов, бензолгалогенидов, алкилфенолов, фенолгалогенидов, алкангалогенидов, алкенгалогенидов, сложных эфиров фталевой кислоты, бисфенолов и полициклических ароматических углеводородов.

Изобретение относится к электротехнике и может быть использовано в электротехнологии, светотехнике, а также в преобразовательной технике при создании источников питания и систем управления озонаторов, газоразрядных ламп различных типов, электрических фильтров, систем обеззараживания и очистки воды, формовки слоев твердых материалов и пленок и других электрических нагрузок
Наверх