Способ глубокой очистки аммиака

Заявляемое изобретение относится к способам очистки веществ и касается разработки способа глубокой очистки аммиака, используемого в технологии получения эпитаксиальных структур нитридов кремния, галлия, алюминия и других материалов, применяемых в опто- и микроэлектронике. Способ включает фильтрацию газообразного аммиака при температуре ниже 0°С, при давлении ниже 200 мм рт.ст. Поток аммиака фильтруют через низкотемпературную зону с линейной скоростью ниже 10 см/сек. После фильтрации аммиак очищают вакуумной дистилляцией. Способ характеризуется простотой аппаратурного оформления и высоким уровнем промышленной безопасности метода. Чистота аммиака по содержанию основного компонента составляет величину более 99,99996 об.%. 1 табл.

 

Изобретение относится к способам очистки веществ и касается разработки способа глубокой очистки аммиака, используемого в технологии получения эпитаксиальных структур нитридов кремния, галлия, алюминия и других материалов, применяемых в опто- и микроэлектронике.

Для глубокой очистки аммиака известен метод низкотемпературной ректификации, являющийся эффективным для удаления многих примесей (Девятых Г.Г., Зорин А.Д. Летучие неорганические гидриды особой чистоты, М., Наука, 1974, стр.177, патент США 7,001,490 В2, опубл. 21.02.2006). Эти способы позволяют получить аммиак с содержанием примесей углеводородов и летучих неорганических соединений 1·10-2-1·10-3 %).

Известен способ глубокой очистки аммиака от углекислого газа, воды и масла, согласно которому предварительно сконденсированный аммиак подвергают противоточной кристаллизации при температуре минус 100-120°С и давлении 40-50 мм рт.ст. (А.С. №554207, опубл. 15.04.1977, БИ №14, МКИ: С01С 1/12).

Упомянутый способ позволяет достичь очистки аммиака от наиболее трудноудаляемых примесей, таких как масло, вода, углекислый газ, метан, этан, бензол и других до

1·10-2-1·10-5 %.

Однако методы ректификации и кристаллизации не эффективны для очистки аммиака от масла и взвешенных металлических частиц размером менее 1 мкм, наличие которых ограничивает использование аммиака для получения полупроводниковых пленок.

Упомянутые индивидуальные способы очистки не обеспечивают очистку аммиака от широкого круга примесей.

Известны способы глубокой очистки аммиака от лимитирующих примесей воды, масла, постоянных газов и других примесей, в том числе и от взвешенных частиц, в которых очистку осуществляют комбинацией методов, например используют температурно-программируемую адсорбцию и фильтрацию (патент США №6,065,306, опубл. 23.05.2000), дистилляцию и фильтрацию (патент США, опубл. 14.12.1999, европейский патент WO 2006/005990 A1, C01C 1/02, опубл. 19.01.2006) и другие комбинированные методы.

Эти способы обеспечивают высокую степень очистки аммиака от упомянутых примесей (до уровня 99,9995%), однако эти методы трудоемки по способам их реализации и аппаратурному оформлению.

Известен способ очистки летучих неорганических гидридов от взвешенных частиц путем фильтрации гидридов в газообразном состоянии при температуре ниже 0°С при давлении 200-400 мм рт.ст. (А.С. №614615 МКИ: С01В 6/34, опубл. 27.11.2003, БИ №33), выбранный в качестве прототипа.

Способ позволяет получать летучие гидриды бора, кремния, фосфора, германия, мышьяка, серы, сурьмы, селена, теллура с содержанием примесей металлов в форме взвешенных частиц не более чем 1·10-5-1·10-7 вес.%.

Авторы заявляемого изобретения воспроизвели известный способ для очистки аммиака. Эксперименты проводили при давлении 200-400 мм рт.ст. и температуре ниже 0°С. Результаты экспериментов показали, что этот способ не обеспечивает достаточной глубины очистки аммиака, т.к. при давлении 200-400 мм рт.ст. при температуре ниже минус 40-50°С аммиак конденсируется на фильтрах, а при температур выше минус 40-50°С - содержание воды в очищенном аммиаке находится на уровне 1·10-2 вес.%, масла - на уровне 5·10-6 вес.%, что исключает использование аммиака в эпитаксиальной технологии.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа глубокой очистки аммиака от воды и других кристаллизующихся примесей.

Эта задача решается за счет того, что в способе очистки аммиака путем фильтрации газообразного аммиака через фильтр, помещенный в низкотемпературную зону при температуре ниже 0°С, согласно заявляемому изобретению фильтрацию проводят с линейной скоростью менее 10 см/сек при давлении менее 200 мм рт.ст., а после фильтрации аммиак очищают вакуумной дистилляцией.

Сущность изобретения заключается в том, что низкотемпературную фильтрацию газообразного аммиака ведут со скоростью менее 10 см/сек при давлении менее 200 мм рт.ст. а после фильтрации аммиак очищают вакуумной дистилляцией.

Заявляемый способ основан на переводе высококипящих примесей (воды, масла и других) из молекулярного в гетерогенное состояние, а также на укрупнении существующих частиц субмикронного размера с последующим удалением примесного состава из газовой фазы путем фильтрации через фильтр, находящийся в низкотемпературной зоне.

Низкотемпературная фильтрация, при упомянутых выше условиях, обеспечивает эффективную очистку от примесей металлов в виде взвешенных частиц, масла, воды и других конденсирующихся примесей.

Способ характеризуется простотой аппаратурного оформления и не требует конденсации аммиака, что существенно повышает промышленную безопасность метода.

Очистка от воды и других конденсирующихся примесей происходит за счет их кристаллизации из газового потока с образованием укрупненных взвешенных частиц, которые вместе с укрупненными частицами металлов удаляют фильтрацией.

Существенными признаками низкотемпературной фильтрации являются условия ее проведения: линейная скорость менее 10 см/сек и давление менее 200 мм рт.ст. Опытным путем было установлено, что при фильтрации с линейной скоростью менее 10 см/сек происходит эффективная очистка от воды с максимально возможной высокой производительностью. При скорости фильтрации более 10 см/сек эффективность очистки от воды уменьшается более чем на 20-40%. При проведении очистки аммиака при давлении ниже 200 мм рт.ст. содержание примеси воды составляет 1·10-6 вес.%.

В зависимости от области применения очищаемого аммиака подбирают давление, при этом существенно, чтобы оно было ниже 200 мм рт.ст. При давлении выше 200 мм рт.ст. очистка от воды достигает уровня 1·10-3 вес.%, что существенно ниже требуемого уровня (менее 1·10-4 вес.%). На стадии вакуумной дистилляции происходит очистка аммиака от постоянных газов.

Существенным признаком является то, что очистку от постоянных газов (кислорода, азота, водорода и других) следует проводить после очистки аммиака от взвешенных частиц субмикронного размера, воды, масла и других конденсирующихся примесей. В противном случае примеси воды, масла и взвешенных частиц могут образовывать ассоциаты и создавать диффузионные ограничения при очистке от примесей постоянных газов, что приводит к увеличению концентрации постоянных газов более, чем на порядок.

По данным газохроматографического и ультрамикроскопического методов анализа содержание примесей в очищенном аммиаке представлено в таблице, а чистота подвергнутого глубокой очистки аммиака по содержанию основного компонента составляет величину более 99,99996 об.%.

Пример 1. Газообразный аммиак с исходным содержанием 10-1 вес.% подают из баллона под давлением 3 атм через систему дросселей, снижая давление до 80 мм рт.ст., в низкотемпературную зону фильтрации на фильтр Петрянова, охлажденный до минус 69°С. Через охлажденную зону поток аммиака проходит с линейной скоростью 2 см/сек. Очищенный аммиак конденсируется в приемнике, охлаждаемом жидким азотом. После чего аммиак подвергают очистке вакуумной дистилляцией. По данным анализа полученный аммиак удовлетворяет требованиям микроэлектроники (содержание примесей менее 4·10-5 вес.%).

Пример 2. Газообразный аммиак с исходным содержанием 10-1 вес.% из баллона конденсируется в приемнике, охлаждаемом жидким азом. После чего аммиак подвергают очистке вакуумной дистилляцией. Затем очищенный после вакуумной дистилляции аммиак размораживают и, как в примере 1, под давлением 80 мм рт.ст. подают в низкотемпературную зону фильтрации на фильтр Петрянова, охлажденный до минус 69°С. Через охлажденную зону поток аммиака проходит с линейной скоростью 2 см/сек. Очищенный аммиак конденсируется в приемнике, охлаждаемом жидким азотом. По данным анализа полученный аммиак не удовлетворяет требованиям микроэлектроники (содержание примесей 1·10-3 вес.%).

Пример 3. Газообразный аммиак с исходным содержанием 10-1 вес.% подают из баллона под давлением 3 атм через систему дросселей, снижая давление до 80 мм рт.ст., в низкотемпературную зону фильтрации на фильтр Петрянова, охлажденный до минус 69°С. Через охлажденную зону поток аммиака проходит с линейной скоростью 8 см/сек. Очищенный аммиак конденсируется в приемнике, охлаждаемом жидким азотом. После чего аммиак подвергают очистке вакуумной дистилляцией. По данным анализа полученный аммиак удовлетворяет требованиям микроэлектроники (содержание примесей менее 4·10-5 вес.%). При этом в отличие от примера 1 увеличивается производительность процесса очистки.

Пример 4. Газообразный аммиак с исходным содержанием 10-1 вес.% подают из баллона под давлением 3 атм через систему дросселей, снижая давление до 80 мм рт.ст., в низкотемпературную зону фильтрации на фильтр Петрянова, охлажденный до минус 69°С. Через охлажденную зону поток аммиака проходит с линейной скоростью 12 см/сек. Очищенный аммиак конденсируется в приемнике, охлаждаемом жидким азотом. После чего аммиак подвергают очистке вакуумной дистилляцией. По данным анализа полученный аммиак не удовлетворяет требованиям микроэлектроники (содержание примесей менее 2·10-3 вес.%).

Пример 5. Газообразный аммиак с исходным содержанием 10-1 вес.% подают из баллона под давлением 3 атм через систему дросселей, снижая давление до 20 мм рт.ст., в низкотемпературную зону фильтрации на фильтр Петрянова, охлажденный до минус 85°С. Через охлажденную зону поток аммиака проходит с линейной скоростью 2 см/сек. Очищенный аммиак конденсируется в приемнике, охлаждаемом жидким азотом. После чего аммиак подвергают очистке вакуумной дистилляцией. По данным анализа полученный аммиак удовлетворяет требованиям микроэлектроники (содержание примесей менее 4·10-5 вес.%).

Пример 6. Газообразный аммиак с исходным содержанием 10-1 вес.% подают из баллона под давлением 3 атм через систему дросселей, снижая давление до 120 мм рт.ст., в низкотемпературную зону фильтрации на фильтр Петрянова, охлажденный до минус 49°С. Через охлажденную зону поток аммиака проходит с линейной скоростью 4 см/сек. Очищенный аммиак конденсируется в приемнике, охлаждаемом жидким азотом. После чего аммиак подвергают очистке вакуумной дистилляцией. По данным анализа полученный аммиак удовлетворяет требованиям микроэлектроники (содержание примесей 4·10-5 вес.%).

Способ глубокой очистки аммиака фильтрацией газообразного аммиака при температуре ниже 0°С, отличающийся тем, что фильтрацию ведут при давлении ниже 200 мм рт.ст. при прохождении потока через низкотемпературную зону с линейной скоростью ниже 10 см/с, а после фильтрации аммиак очищают вакуумной дистилляцией.



 

Похожие патенты:

Изобретение относится к контурам синтеза аммиака, содержащим газы, которые не вступают в реакцию и накапливались бы, если их не выдувать. .
Изобретение относится к производству пигментов, а также к технологиям изготовления бумаги с наполнителем, мелованных видов бумаги и картона. .

Изобретение относится к переработке промышленных отходов аммиачного производства, в частности к утилизации отработанного раствора моноэтаноламина при очистке конвертированного газа.

Изобретение относится к установкам для производства аммиака. .

Изобретение относится к коксохимическому производству, в частности к технологии получения концентрированной аммиачной воды. .

Изобретение относится к области фиксации молекулярного азота и может быть использовано для получения удобрений. .

Изобретение относится к химической промышленности и позволяет получать аммиак путем взаимодействия азота и воды в присутствии фотокатализатора под действием УФ-облучения.

Изобретение относится к процессам фотокаталитического восстановления азота до аммиака в ходе фотолиза воды под действием ультрафиолетового облучения и может быть использовано в промышленной технологии получения аммиака.

Изобретение относится к материалам для хранения аммиака

Изобретение относится к способу и установке для получения аммиака из смеси аммиак, H2S и/или CO2-содержащего кислого газа и легкокипящих водорастворимых органических компонентов
Изобретение относится к химической промышленности. Жидкий аммиак перемешивают с сильно основным ионообменником и пропускают через него, при температуре от минус 20 до 60°С и давлении от 1 до 25 бар в течение 1-36 часов. Содержание аммиака в жидком аммиаке более 98 мас.%, а галогенид-ионов, например ионов хлорида, от 10 частей на млн. до 200 частей на млн. Скорость потока жидкого аммиака от 10 до 120 (м3 аммиака)/(м3 ионообменника)/в час. Ионообменник уложен неподвижными слоями. Основной каркас сильно основного ионообменника представляет собой ковалентно-сшитую полимерную матрицу, образованную из сшитого полистирола или полиакрилата, а в качестве функциональных групп ионообменник содержит четвертичные аммонийные группы. Очищенный аммиак используют в способе получения аминов. Сокращается количество нежелательных побочных продуктов, снижается коррозия оборудования. 2 н. и 12 з.п. ф-лы, 2 пр.
Изобретение может быть использовано в неорганической химии. Способ переработки гипса включает обработку суспензии гипса аммиачно-карбонатным раствором с получением мела и сульфата аммония. Сульфат аммония термически разлагают на гидросульфат аммония и аммиак. Аммиак возвращают на изготовление аммиачно-карбонатного раствора. Изготавливают раствор гидросульфата аммония и вспомогательного сульфата, образующего с сульфатом аммония двойной сульфат, осаждают и отделяют двойной сульфат. Полученный раствор разбавленной серной кислоты очищают осаждением примесей. Отделяют примеси, очищенный раствор разбавленной серной кислоты упаривают до получения товарной серной кислоты. Двойной сульфат разлагают на сульфат аммония, который возвращают для разложения на гидросульфат аммония и аммиак, и на вспомогательный сульфат, который возвращают для изготовления раствора гидросульфата аммония и вспомогательного сульфата, образующего с сульфатом аммония двойной сульфат. В качестве указанного вспомогательного сульфата используют сульфат, образующий с сульфатом аммония соль Туттона или квасцы. Изобретение позволяет утилизировать гипс без использования аммиака с попутным получением серной кислоты. 13 з.п. ф-лы, 5 пр.

Изобретение относится к химическим технологиям, в частности к получению серной кислоты и аммиака из сульфата аммония, и может быть использовано для расширения возможностей переработки сульфата аммония, образующегося при утилизации отходов производств. Способ получения аммиака и серной кислоты из сульфата аммония включает термическое разложение сульфата аммония на гидросульфат аммония и аммиак, изготовление раствора гидросульфата аммония и вспомогательного сульфата, образующего с сульфатом аммония двойной сульфат, осаждение двойного сульфата, отделение двойного сульфата, полученный раствор разбавленной серной кислоты очищают, предпочтительно осаждением примесей, отделяют примеси, очищенный раствор разбавленной серной кислоты упаривают до получения товарной серной кислоты, двойной сульфат разлагают на сульфат аммония, который возвращают на термическое разложение, и на вспомогательный сульфат, который возвращают для получения раствора гидросульфата аммония и вспомогательного сульфата, образующего с сульфатом аммония двойной сульфат. Изобретение позволяет расширить возможности утилизации сульфата аммония, упростить производство аммиака и серной кислоты из сульфата аммония, исключить образование при производстве серной кислоты экологически опасного сернистого газа. 17 з.п. ф-лы, 5 пр.

Изобретение относится к способу эксплуатации промышленной установки по производству мочевины, содержащей несколько систем. В способе эксплуатации установки по производству мочевины из CO2 и аммиака, содержащий по меньшей мере две системы, выполненные соединенными параллельно, при отключении оборудования синтеза аммиака одной из систем,используют сжиженный аммиак, хранимый в отключенной системе. При этом увеличивают количество извлеченного CO2 в оборудовании извлечения CO2 в оборудовании синтеза аммиака другой системы. Синтез мочевины в блоке синтеза мочевины отключенной системы можно продолжать с помощью увеличенного количества извлеченного CO2 и сжиженного аммиака. В результате этого эксплуатацию оставшейся одной из двух систем проводят в условиях стандартной эксплуатации для получения мочевины, и синтез мочевины можно продолжать до повторного пуска на промышленной установке по производству мочевины даже той системы, которая в обычным условиях была бы отключена. Изобретение позволяет предотвратить значительное уменьшение выпуска мочевины даже в случае отключения оборудования синтеза аммиака. 1 з.п. ф-лы, 12 ил.

Изобретение может быть использовано в химической промышленности. Установка синтеза химического продукта, в частности аммиака, включает секцию (10) синтеза высокого давления для проведения реакции и секцию (50) рекуперации энергии, содержащую теплообменник (17), выполненный с возможностью теплообмена между частью (16) жидкого продукта, полученного в секции (10) синтеза, и потоком (18) источника сбросного тепла с получением расширяемого потока (20) в паровом или сверхкритическом состоянии, детандер (13) для выработки механической энергии за счёт расширения этого потока, конденсатор (22) для конденсации потока из детандера (13). Техническим результатом является рекуперация тепла потока синтез-газа, выходящего из установки низкотемпературной конверсии. 4 н. и 8 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к химической промышленности и может быть использовано для очистки газов, образующихся в процессе прямого синтеза аммиака из водорода и азота. Полученный аммиак или смесь газов последовательно пропускают под давлением 0,1-25 МПа через колонну 3, заполненную оксидом алюминия с удельной поверхностью 50-150 м2/г, через колонну 4, заполненную СаО, NaOH, KOH, или расплавом NaOH/KOH, или их смесью, при температуре 20-70°С и далее при 170-425°С через колонну 5, заполненную активированным углем с удельной поверхностью 100÷3000 м2/г. На поверхность активированного угля в колонне 5 нанесены нитраты(V) или нитраты(III) натрия, калия, цезия, магния, кальция, стронция или бария или их смесь, предварительно активированные инертным газом, или водородом, или их смесью при давлении 0,1-25 МПа и температуре 250-700°С. Скорость газового потока 100-1000 м3/ч. Для очистки аммиака из него предварительно удаляют метан путём пропускания над жидким аммиаком в промежуточной ёмкости 1. Адсорбент регенерируют пропусканием инертного газа, водорода или их смеси в колонне 3 при 200-700°С, а в колонне 5 - при 250-700°С. Повышается производительность процесса получения аммиака высокой чистоты, содержание примесей в котором не превышает 1 ppm. 6 з.п. ф-лы, 2 ил., 3 пр.

Изобретение может быть использовано в процессах растворения, выщелачивания, выделения металлов и их соединений из водных растворов. Для осуществления способа проводят извлечение металлов из полиметаллического сырья выщелачиванием солянокислым раствором, осаждение металлов из солянокислых растворов осуществляют аммиаком и из раствора кристаллизуют соль NH4Clтв. Раздельное получение газообразных основного (NH3) и кислого (HCl) реагентов осуществляют взаимодействием солей (NH4)2SO4 и NH4Cl по схеме при этом процесс осуществляют циклически с регенерацией соли (NH4)2SO4 по реакции 2 и NH4Cl в технологических циклах, использующих указанные газообразные реагенты. Способ обеспечивает эффективную и экономичную технологию с высокой степенью извлечения металлов с одновременной регенерацией использующихся реагентов. 2 ил., 2 пр.

Изобретение может быть использовано в процессах растворения, выщелачивания, выделения металлов и их соединений из водных растворов. Для осуществления способа проводят извлечение металлов из полиметаллического сырья выщелачиванием солянокислым раствором, осаждение металлов из солянокислых растворов осуществляют аммиаком и из раствора кристаллизуют соль NH4Clтв. Раздельное получение газообразных основного (NH3) и кислого (HCl) реагентов осуществляют взаимодействием солей (NH4)2SO4 и NH4Cl по схеме при этом процесс осуществляют циклически с регенерацией соли (NH4)2SO4 по реакции 2 и NH4Cl в технологических циклах, использующих указанные газообразные реагенты. Способ обеспечивает эффективную и экономичную технологию с высокой степенью извлечения металлов с одновременной регенерацией использующихся реагентов. 2 ил., 2 пр.
Наверх